Updated Efficacy & Safety of Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed/Refractory Waldenström Macroglobulinemia: Ongoing Phase 1 CaDAnCe-101 Results

Anna Maria Frustaci,¹ John F. Seymour,² Chan Y. Cheah,³⁻⁵ Ricardo D. Parrondo,⁶ John N. Allan,⁷ Judith Trotman,⁸ Mazyar Shadman,^{9,10} Ranjana Advani,¹¹ Herbert Eradat,¹² Pier Luigi Zinzani,¹³ Masa Lasica,¹⁴ Emmanuelle Tchernonog,¹⁵ Steven P. Treon,¹⁶ Linlin Xu,¹⁷ Kunthel By,¹⁷ Shannon Fabre,¹⁷ Motohisa Takai,¹⁷ Amit Agarwal,¹⁷ Constantine S. Tam¹⁸

¹ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; ²Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia; ³Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ⁴Medical School, University of Western Australia, Crawley, WA, Australia; ⁵Linear Clinical Research, Nedlands, WA, Australia; ⁶Mayo Clinic - Jacksonville, Jacksonville, FL, USA; ⁷Weill Cornell Medicine, New York, NY, USA;
⁸Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ⁹Fred Hutchinson Cancer Center, Seattle, WA, USA; ¹⁰University of Washington, Seattle, WA, USA; ¹¹Stanford Cancer Institute, Stanford, CA, USA; ¹²David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ¹³Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ¹⁴St Vincent's Hospital Melbourne, Melbourne, VIC, Australia; ¹⁵CHRU Montpellier - Hôpital St Eloi, Montpellier, France; ¹⁶Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ¹⁷BeOne Medicines Ltd, San Carlos, CA, USA; ¹⁸Alfred Hospital and Monash University, Melbourne, VIC, Australia

Disclosures for Anna Maria Frustaci

- Honoraria, consulting, or advisory role: AbbVie, BeOne Medicines Ltd, AstraZeneca, Janssen
- Travel, accommodations, expenses: AbbVie, BeOne Medicines Ltd, AstraZeneca

BGB-16673: A Chimeric Degradation Activating Compound (CDAC)

- BTK inhibitors are effective in WM but are associated with toxicities and/or resistance development^{1,2}
- BGB-16673 is an orally available protein degrader that blocks BTK signaling by tagging BTK for degradation through the cell's proteasome pathway, leading to tumor regression³
- In preclinical models, BGB-16673 showed CNS penetration and degraded both wild-type and mutant BTK resistant to cBTK (C481S, C481F, C481Y, L528W, T474I) and ncBTK inhibitors (V416L, M437R, T474I, L528W)^{3,4}
- BGB-16673 led to substantial reductions in BTK protein levels in peripheral blood and tumor tissue⁵
- Here, updated safety and efficacy results are presented in patients with R/R WM in phase 1 of CaDAnCe-101

1. Castillo JJ, et al. Lancet Haematol. 2020;7(11):e827-e837; 2. Ntanasis-Stathopoulos I, et al. Ther Adv Hematol. 2021;12:2040620721989586; 3. Feng X, et al. EHA 2023. Abstract P1239; 4. Wang H, et al. EHA 2023. Abstract P1219; 5. Seymour JF, et al. ASH 2023. Abstract 4401.

CaDAnCe-101: Phase 1/2, Open-Label, Dose-Escalation/Expansion Study in R/R B-Cell Malignancies

^aData from gray portions of the figure are not included in this presentation. ^bTreatment was administered until progression, intolerance, or other criteria were met for treatment discontinuation. ^cSafety was assessed according to CTCAE v5.0. ^dResponses were assessed per IWWM-6, modified Owen 2013 criteria after 4 weeks. BTK, Bruton tyrosine kinase; cBTK, covalent Bruton tyrosine kinase; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CTCAE, Common Terminology Criteria for Adverse Events; DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; FL, follicular lymphoma; GCB, germinal center B cell; IWWM, International Workshop on Waldenström Macroglobulinemia;

RCL, manuface cell by promise cells of the standard sta Standard s

Baseline Patient Characteristics

Heavily pretreated with high rate of poor risk features

	Total (N=36)		Total (N=36)
Age, median (range), years	72.0 (49-81)	Mutation status,	
Male, n (%)	22 (61.1)	n/N with known status (%)ª	
ECOG PS, n (%)		MYD88 mutation present	31/35 (88.6)
0	17 (47.2)	CXCR4 mutation present	19/35 (54.3)
1	17 (47.2)	BTK mutation present	11/31 (35.5)
2	2 (5.6)	TP53 mutation present	16/31 (51.6)
Z Hemoglobin, median (range), g/L	102 (60-146)	No. of prior lines of therapy,	3 (1-11)
Hemoglobin ≤110 g/L, n/N with known status (%)	25/34 (73.5)	median (range) Prior therapy, n (%)	
Neutrophils, median (range), 10 ⁹ /L	26(0.274)	cBTK inhibitor	36 (100)
	2.6 (0.2-7.4)	Anti-CD20 antibody	36 (100)
Neutrophils ≤1.5×10 ⁹ /L,	11/33 (33.3)	Chemotherapy	34 (94.4)
n/N with known status (%)	Proteasome inhibitor		11 (30.6)
Platelets, median (range), 10 ⁹ /L	153.5 (14.0-455.0)	BCL2 inhibitor	9 (25.0)
lgM, median (range), g/L	35.1 (0.3-92.6)	ncBTK inhibitor ^b	7 (19.4)
		Discontinued prior BTK inhibitor due to PD, n (%)	30 (83.3)

Data cutoff: March 3, 2025.

^aConfirmed by central laboratory. ^bAll seven patients with ncBTK inhibitor exposure were also exposed to a cBTK inhibitor.

BCL2, B-cell lymphoma 2; BTK, Bruton tyrosine kinase; cBTK, covalent BTK; ECOG PS, Eastern Cooperative Oncology Group performance status; IgM, immunoglobulin M; ncBTK, noncovalent BTK;

PD, progressive disease; WM, Waldenström macroglobulinemia.

Safety Summary and All-Grade TEAEs in ≥10% of All Patients

Well tolerated with no treatment-related TEAEs leading to death

Most common TEAEs were neu	Itropenia	Neutropenia ^c -	8		31	1			
in 39% and contusion (bruising)	•	Contusion (bruising)			31			•	
of patients		Diarrhea		25					
of patients		Anemia -		-	17				
No atrial fibrillation major bemo	vrrhaada		-						
No atrial fibrillation, major hemo	0	Thrombocytopeniad -		14	6				
febrile neutropenia, or pancreati	ltis	Pyrexia -		14	3				
		COVID-19	1	14					
Patients, n (%)	Total (N=36)	Edema peripheral -	1	14					
Any TEAE	32 (88.9)	Rash -	1	14					
Any treatment-related	25 (69.4)	Amylase increased -			-				
Grade ≥3	22 (61.1)	Back pain -							
Treatment-related grade ≥3	14 (38.9)								
Serious	12 (33.3)	Constipation -		-					
Treatment-related serious	4 (11.1)	Dizziness -							
	. ,	Headache -	11					Grade	-
Leading to death ^b	1 (2.8)	URTI -	11					Grade	1/2
Treatment-related leading to death	0	ŀ				— —			
Leading to treatment discontinuation	2 (5.6)	0	1	10	20	30)	40	50
			Percentage of Patients						

Data cutoff: March 3, 2025. Median follow-up: 8.2 months (range, 0.6-30.6 months).

^aGrade ≥3, serious, or any central nervous system bleeding. ^bSeptic shock (200-mg dose level), note in the context of PD. ^cNeutropenia combines preferred terms *neutrophil count decreased* and *neutropenia*. ^dThrombocytopenia combines preferred terms *platelet count decreased* and *thrombocytopenia*.

IgM, immunoglobulin M; PD, progressive disease; PR, partial response; TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection.

Overall Response Rate

High response rates across all risk groups

 Responses were observed at all dose levels and in patients with prior chemoimmunotherapy (25/30), cBTK inhibitor (27/32), or ncBTK inhibitor (4/4)

		Mutation status, n/N tested (%)	ORR (N=32)
	Total (N=32) ^a	ВТК	
Best overall response, n (%)		Mutated	11/11 (100)
VGPR	10 (31.3)	Unmutated	15/19 (78.9)
PR	14 (43.8)	Unknown MYD88	1/2 (50.0)
MR	3 (9.4)	Mutated	25/28 (89.3)
SD	3 (9.4)	Unmutated Unknown	2/3 (66.7) 0/1 (0)
PD	1 (3.1)	CXCR4	0/1 (0)
Discontinued prior to first assessment	1 (3.1)	Mutated	16/17 (94.1)
ORR, n (%) ^b	27 (84.4)	Unmutated Unknown	11/14 (78.6) 0/1 (0)
Major response rate, n (%) ^c	24 (75.0)	TP53	3/1 (0)
Time to first response, median (range), months ^d	1.0 (0.9-3.7)	Mutated Unmutated Unknown	15/15 (100) 11/15 (73.3) 1/2 (50.0)

^aEfficacy-evaluable population; 4 patients were too early in treatment course to be response-evaluable. ^bIncludes best overall response of MR or better. ^cIncludes best overall response of PR or VGPR. ^dIn patients with a best overall response better than SD.

BTK, Bruton tyrosine kinase; cBTK, covalent Bruton tyrosine kinase; MR, minor response; ncBTK, noncovalent Bruton tyrosine kinase; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good partial response.

Rapid and Significant Cytopenia Improvement Was Observed in Patients With Treatment Response

	Baseline	W9D1
Neutrophil count, median, 10 ⁹ /L	0.9	1.1
Hemoglobin level, median, g/L	98.0	114.0
Platelet count, median, 10 ⁹ /L	39.5	126.0

200 -Mean Median 150 10⁹/L Platelets, 100 50 0 Baseline W2D, M3D, MODI WITD' WED, WEDI W13D1 Visit

5

5

4

Platelet Count in Patients With WM Who Had Baseline Thrombocytopenia and Whose Disease Responded to Treatment

No. of patients 8 7 7 6 5

WIND

5

IgM Decreased in All Patients

Rapid and sustained decrease in IgM in most patients

Patient with rapid IgM increase had *BTK, MYD88, CXCR4*, and *TP53* mutations at baseline, paused treatment for 2-3 weeks due to COVID-19 infection, and developed rapid progression shortly after restarting treatment. D, day; IgM, immunoglobulin M; W, week.

Median PFS Was Not Reached

Responses Occurred Regardless of Baseline Mutations (Best Overall Response vs Baseline Mutation)^a

^aGenomic mutations were centrally assessed by targeted next-generation sequencing.

BTKi, Bruton tyrosine kinase inhibitor; MR, minor response; NE, not evaluable; PR, partial response; SD, stable disease; VGPR, very good partial response; WT, wild type.

Conclusions

- In phase 1 of CaDAnCe-101, the BTK degrader BGB-16673 was well tolerated in heavily pretreated patients with R/R WM
 - Only two patients discontinued treatment due to TEAEs
- Promising antitumor activity was observed, including in patients with BTK inhibitor-resistant mutations, TP53 and CXCR4 mutations, and those previously exposed to chemoimmunotherapy, cBTK inhibitors, and ncBTK inhibitors
 - VGPR 31.3% (10/32); ORR 84.4% (27/32)
 - Rapid decline in IgM, with median time to first response of 1.0 month
 - Rapid improvement in cytopenias seen in responding patients
 - Responses continue to deepen (median follow-up, 8.2 months)
- Based on the totality of data available, BGB-16673 is being evaluated in an ongoing phase 2 study in R/R WM

CaDAnCe-101 Study Sites (Recruiting)

 Enrollment for CaDAnCe-101 phase 1 and phase 2 is ongoing at >100 study sites across the US, Canada, the UK, France, Georgia, Germany, Italy, Moldova, Spain, Sweden, Turkey, Australia, South Korea, Brazil, and Japan

Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers
- This study was sponsored by BeOne Medicines Ltd
- Medical writing was provided by Brittany Gifford, PharmD, of Nucleus Global, an Inizio company, and supported by BeOne Medicines

Corresponding author: Anna Maria Frustaci, annamaria.frustaci@ospedaleniguarda.it