Programmed Cell Death Protein-(Ligand) 1 Inhibitors for Treatment of Locally Advanced or Metastatic Non-Small Cell Lung Cancer in Asian and Non-Asian Patients: A Meta-Analysis

Nicolas Girard,^{1*} Diego Cortinovis,² Gilberto Lopes,³ Pei Jye Voon,⁴ Mesha Austin Taylor,⁵ Lin Zhan,⁵ Sheng Xu,⁶ Kirsha Naicker,⁷ Solange Peters⁸

¹Versailles Saint Quentin University and Curie-Montsouris Thorax Institute, Milano, Italy; ³Sylvester Comprehensive Cancer Center at the University of Miami and the Miller School of Medicine, Miami, FL, USA; ⁴Sarawak General Hospital, Sarawak, Malaysia; ⁵BeOne Medicines, Ltd., Cambridge, MA, USA; ⁶BeOne Medicines, Ltd., Shanghai, China; ⁷BeOne Medicines, Ltd., London, UK; ⁸University of Lausanne and University Hospital of Vaud, Vaud, Switzerland. *Lead and presenting author.

CONCLUSIONS

- Data from this meta-analysis of randomised phase 3 clinical studies support the global use of programmed cell death protein-(ligand) 1 (PD-[L]1) inhibitors as first-line (1L) monotherapy or combination therapy and second-line/later (2L/2L+) monotherapy in Asian and non-Asian patients with unresectable, locally advanced or metastatic non-small cell lung cancer (NSCLC)
- The consistency in clinical benefit shown in this meta-analysis is important when considering the use of drugs that were initially developed in an Asian population, such as tislelizumab, in a wider population, or for global regulatory and reimbursement submissions

INTRODUCTION

- Lung cancer is the leading cause of cancer mortality worldwide, with 1.1 million deaths in Asia vs ~0.5 million deaths in Europe and North America combined in 2022¹
- Treatment for metastatic NSCLC depends on PD-(L)1 tumour cell (TC) expression and/or clinically relevant oncogene translocations. PD-(L)1 inhibitor monotherapy or combination therapy with platinum-based chemotherapy or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) inhibitors are 1L options, and PD-(L)1 inhibitor monotherapy is a 2L option²⁻⁴
- Survival data for metastatic NSCLC in Asian vs non-Asian populations are limited⁵
- We assessed the efficacy and safety of PD-(L)1 inhibitor monotherapy or combination therapy in Asian and non-Asian patients with unresectable, locally advanced or metastatic **NSCLC**

METHODS

- A systematic literature review and meta-analysis were conducted in accordance with published guidance⁶⁻⁸ from January 1, 2010, to October 25, 2024
- Literature searches were performed primarily using the Ovid SP® platform

Selection

- Patients aged ≥18 years with unresectable, locally advanced or metastatic squamous/ nonsquamous NSCLC who received 1L or 2L/2L+ PD-(L)1 inhibitor monotherapy or combination therapy (with platinum-based chemotherapy or CTLA-4 inhibitors) were included; comparators included chemotherapy or placebo
- Randomised, phase 3, controlled studies that included subgroup analyses for Asian patients by ethnicity or region were selected
- Only the intent-to-treat populations or PD-L1 subgroups were included; patients were excluded if they were not suitable for chemotherapy or had positive EGFR mutations or **ALK** translocations

Extraction

- Data were extracted using DistillerSR[©] literature review software and Microsoft Excel[®] • Quality was evaluated using the Cochrane Risk of Bias tool (RoB 2.0),9 and publication
- bias was evaluated using a funnel plot and Begg's test

Outcomes

- Overall survival (OS) and progression-free survival (PFS) hazard ratios (HRs) were extracted using random effects models based on line of therapy, PD-(L)1 inhibitor monotherapy or combination therapy, and high PD-L1 TC expression (≥50%)
- Safety outcomes were described if reported

RESULTS

Study Population

- Twenty-one 1L and 10 2L/2L+ phase 3 studies were included; 10,233 patients received PD-(L)1 inhibitors as 1L (63%) and 2L/2L+ (37%) therapy, and 8498 patients received comparator as 1L (65%) and 2L/2L+ (35%) therapy. Most studies showed low risk of bias
- Asian patients ranged from 2% to 100% (1L) and from 3% to 100% (2L/2L+); nine 1L studies and one 2L/2L+ study enrolled only Asian (China) patients
- Most studies enrolled males (52%-94%), smoking prevalence was high (62%-100%), and baseline Eastern Cooperative Oncology Group performance score was ≥1 in 56%-90% of patients

RESULTS (CONT.)

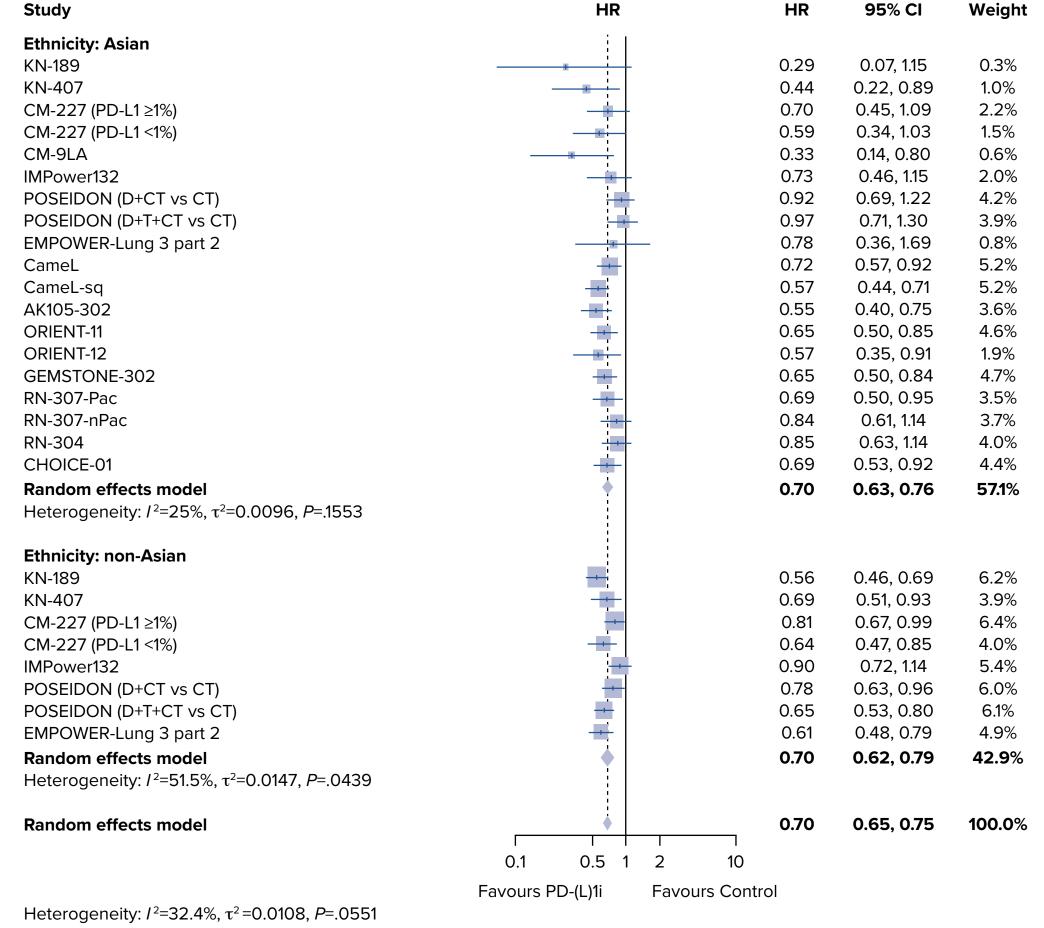
1L PD-(L)1 Inhibitor Combinations

- Beneficial and comparable effect on **OS** for Asian (HR=0.70; 95% confidence interval [CI]: 0.63, 0.76) and non-Asian (HR=0.70; 95% CI: 0.62, 0.79) patients treated with 1L PD-(L)1 inhibitor combination therapy (**Figure 1**)
- Similar effects on PFS observed for Asian (HR=0.53; 95% CI: 0.47, 0.60) and non-Asian (HR=0.60; 95% CI: 0.53, 0.68) patients (**Figure 2**)

2L/2L+ PD-(L)1 Inhibitor Monotherapy

- Beneficial and comparable effect on **OS** with 2L/2L+ PD-(L)1 inhibitor monotherapy in Asian (HR=0.73; 95% CI: 0.64, 0.83) and non-Asian (HR=0.71; 95% CI: 0.64, 0.78) patients
- Greater effect on **PFS** for Asian (HR=0.57; 95% CI: 0.49, 0.67) than non-Asian (HR=0.73; 95% CI: 0.56, 0.95) patients (**Figure 4**); this may be due to differences in regional treatment patterns, additional maintenance therapy, prior treatment, or prior surgery

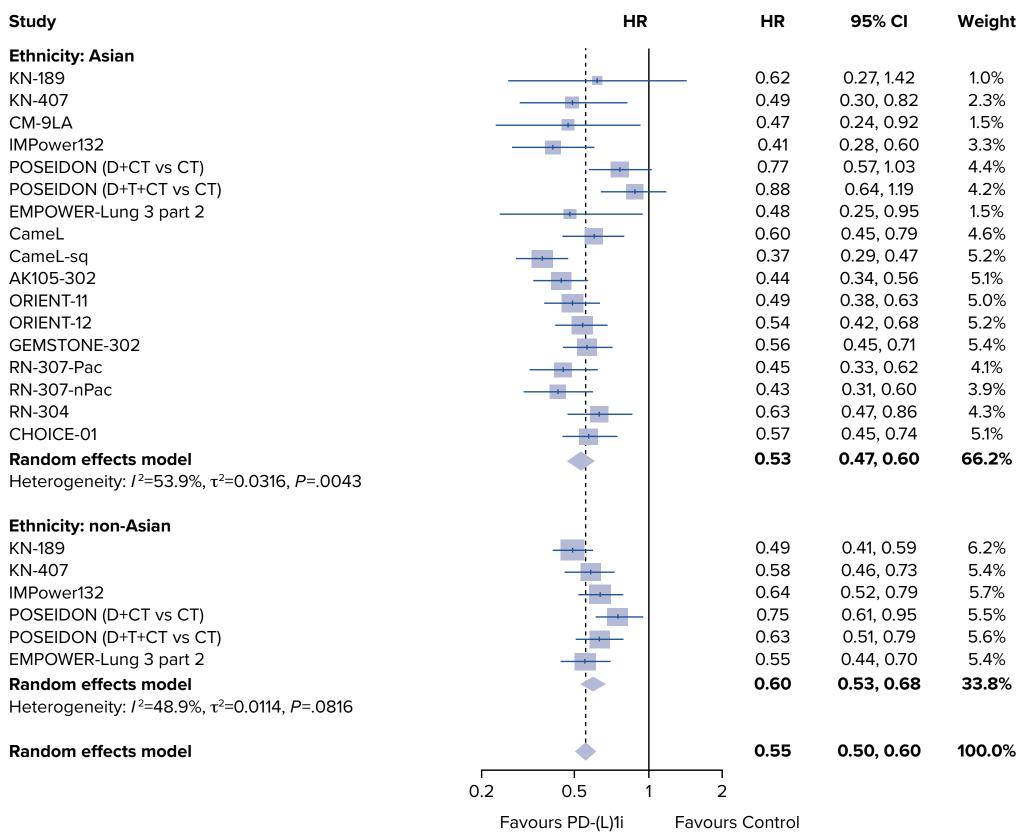
1L PD-(L)1 Inhibitor Monotherapy or Combination Therapy by PD-(L)1 Status


- Highly efficacious treatment effect on OS in Asian (HR=0.50; 95% CI: 0.39, 0.64) and non-Asian (HR=0.64; 95% CI: 0.55, 0.76) patients with high PD-(L)1 TC expression (Figure 5)
- Slightly greater magnitude of effect on **PFS** in Asian (HR=0.38; 95% CI: 0.32, 0.44) than non-Asian (HR=0.46; 95% CI: 0.37, 0.56) patients; heterogeneity was moderate in the non-Asian analysis, which may reflect fewer studies included (Figure 6)

- Data were obtained from six 1L and two 2L/2L+ PD-(L)1 inhibitor studies
- Trend towards higher rates of grade 3-5 treatment-related adverse events in Asian than non-Asian subpopulations in 6 of 8 studies, eg, KEYNOTE-407: 82% China, 57% overall; CheckMate 227: 55% Japan, 33% overall; IMPower132: 73% Japan, 65% China, 58% overall

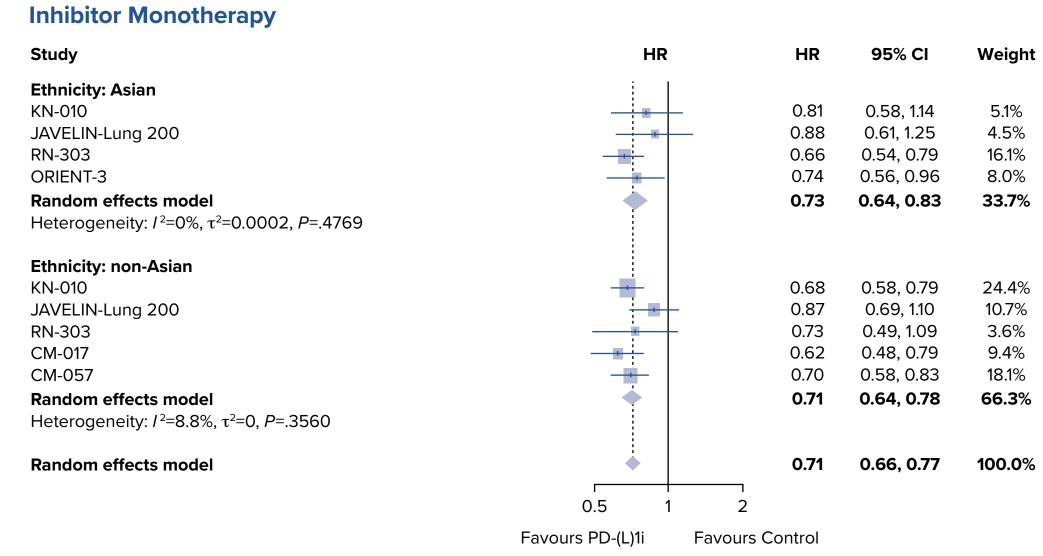
Limitations

- Several limitations inherent with meta-analysis design
- Lack of data for some subgroups, including biomarkers and genetic profiles
- Outcomes impacted by variations in patient numbers, follow-up time, and regional adverse event reporting practices


Figure 1. OS for Asian and Non-Asian Patients With NSCLC Treated With 1L PD-(L)1 **Inhibitor Combination Therapy**

Test for subgroup differences: χ_4^2 =0.01, df=1, P=.9344

Abbreviations: CM, CheckMate; CT, chemotherapy; D, durvalumab; KN, KEYNOTE; PD-(L)1i, programmed cell death protein-(ligand) 1 inhibitor; RN, RATIONALE; T, tremelimumab.


Figure 2. PFS for Asian and Non-Asian Patients With NSCLC Treated With 1L PD-(L)1 **Inhibitor Combination Therapy**

Heterogeneity: $I^2=54.7\%$, $\tau^2=0.0254$, P=.0009

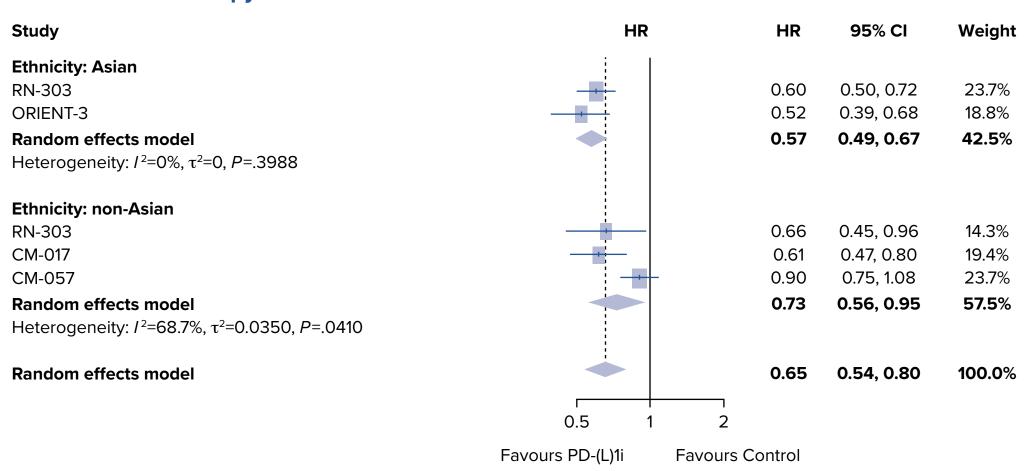

Test for subgroup differences: χ_1^2 =1.99, df=1, P=.1585

Figure 3. OS for Asian and Non-Asian Patients With NSCLC Treated With 2L/2L+ PD-(L)1

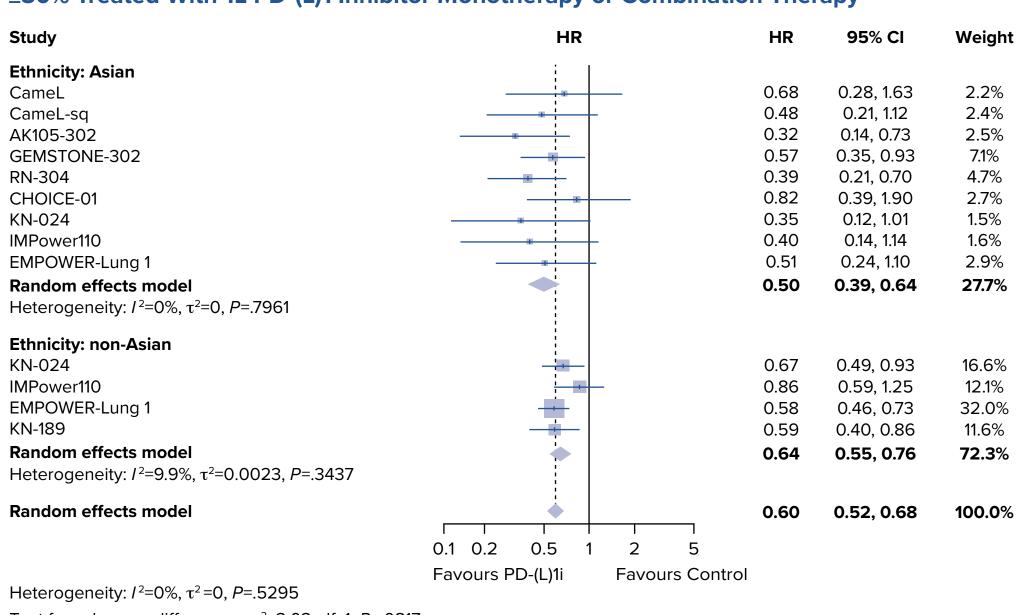

Heterogeneity: $I^2=0\%$, $\tau^2=0$, P=.5369Test for subgroup differences: χ^2_1 =0.12, df=1, P=.7271

Figure 4. PFS for Asian and Non-Asian Patients With NSCLC Treated With 2L/2L+ PD-(L)1 **Inhibitor Monotherapy**

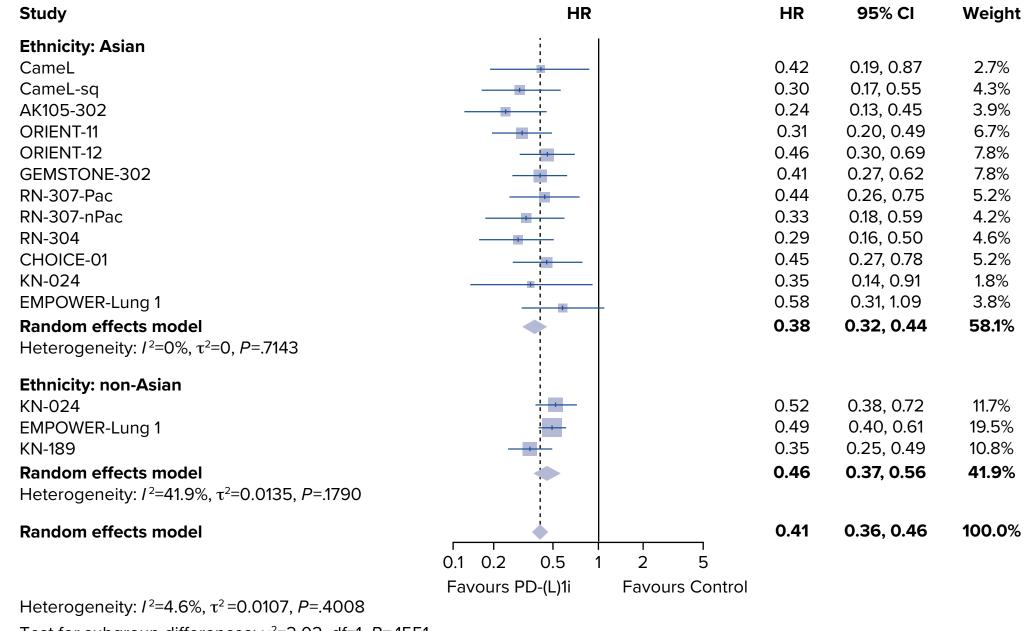

Heterogeneity: $I^2=73.5\%$, $\tau^2=0.0349$, P=.0045Test for subgroup differences: χ_1^2 =2.39, df=1, P=.1221

Figure 5. OS for Asian and Non-Asian Patients With NSCLC and PD-L1 TC Expression ≥50% Treated With 1L PD-(L)1 Inhibitor Monotherapy or Combination Therapy

Test for subgroup differences: χ_1^2 =3.03, df=1, P=.0817

Figure 6. PFS for Asian and Non-Asian Patients With NSCLC and PD-L1 TC Expression ≥50% Treated With 1L PD-(L)1 Inhibitor Monotherapy or Combination Therapy

Test for subgroup differences: χ_1^2 =2.02, df=1, P=.1551

REFERENCES

- 1. International Agency for Research on Cancer. Globocan Factsheets: Lung. https://gco.iarc.who.int/media/ globocan/factsheets/cancers/15-trachea-bronchus-and-lung-fact-sheet.pdf. Accessed: June 30, 2025.
- 2. Remon J, et al. *Ann Oncol*. 2021;32:1637-1642.
- 3. Ricciuti B, Awad MM. Cancer J. 2020;26:485-495.
- 4. Hendriks LE, et al. Ann Oncol. 2023;34:358-376. 5. Peng S, et al. *Transl Lung Cancer Res*. 2020;9:1124-1137
- 6. Higgins H, et al. The Cochrane Collaboration. <u>www.training.cochrane.org/handbook</u>. Accessed: June 30, 2025.
- 7. Centre for Reviews and Dissemination. CRD's Guidance for Undertaking Reviews in Health Care. https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf. Accessed: June 30, 2025.
- 8. Page MJ, et al. *BMJ*. 2021;372:n71.
- 9. Sterne JAC, et al. *BMJ*. 2019;366:14898.

DISCLOSURES

NG: Grants from AbbVie, Amgen, AstraZeneca, BeOne Medicines, Ltd., Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Gilead Sciences, Hoffmann-La Roche, Janssen, LeoPharma, Lilly, Merck Sharp & Dohme, Novartis, Sivan; Consulting fees from AbbVie, Amgen, AstraZeneca, BeOne Medicines, Ltd., Bristol Myers Squibb, Daiichi Sankyo, Gilead Sciences, Ipsen, Hoffmann-La Roche, Janssen, LeoPharma, Merck Sharp & Dohme, Mirati, Novartis, Pfizer, Sanofi, Takeda; Advisory board attendance with Hoffmann-La Roche; Other financial or non-financial interests with AstraZeneca.

ACKNOWLEDGMENTS

The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centres. The authors would also like to thank IQVIA for their support with the systematic literature review, and Yu Wang for their contribution to statistical analyses. This study was sponsored by BeOne Medicines, Ltd. Medical writing support was provided by Sam Phillips, PhD, of Parexel, and supported by BeOne Medicines.