A phase 1 study of the OX40 agonist, BGB-A445, with or without tislelizumab, an anti-PD-1 monoclonal antibody, in patients with advanced NSCLC, HNSCC or NPC

Authors: Min Hee Hong,¹ Byoung Chul Cho,¹ Sanjeev Deva,² Fang Ma,³ Jianhua Shi,⁴ Meili Sun,⁵ Pei Jye Voon,⁶ David Dai-Wee Lee,⁷ Shiangjiin Leaw,⁸ Tahmina Rahman,⁹ Hugh Giovinazzo,⁹ Xin Chen,¹⁰ Yan Dong,⁹ Yifan Qin,⁸ Young Joo Lee¹¹

Affiliations: ¹Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ²Auckland City Hospital, Auckland, New Zealand; ³The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; ⁴Linyi Cancer Hospital, Linyi, Shandong, China; ⁵Jinan Central Hospital, Jinan, Shandong, China; ⁶Sarawak General Hospital, Kuching, Malaysia; ⁷University of Malaya Medical Centre, Kuala Lumpur, Malaysia; ⁸BeiGene (Shanghai) Co., Ltd., Shanghai, China; ⁹BeiGene USA, Inc., San Mateo, CA, USA; ¹⁰BeiGene USA Inc., Ridgefield Park, NJ, USA; ¹¹National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea

Background: BGB-A445 is a monoclonal antibody OX40 agonist that does not compete with the natural OX40 ligand, reducing the likelihood of a hook effect and distinguishing it from other OX40-targeting therapies. Here, we present results from the dose expansion portion of a ph 1, open-label, dose escalation/expansion trial of BGB-A445 in pts with advanced solid tumors (NCT04215978). Ph 1a results were previously presented (Desai *et al. J Clin Oncol.* 2023).

Methods: Previously treated pts with NSCLC (Part A1), HNSCC (Part A2) or NSCLC with PD-L1 ≥50% (Part C) received BGB-A445 monotherapy, while pts with treatment-naïve recurrent/metastatic NPC (Part B) received BGB-A445 combined with tislelizumab and chemotherapy. Primary endpoints included ORR per investigator (RECIST v1.1); secondary endpoints were to assess PFS, DOR and DCR, safety/tolerability, PK, and host immunogenicity.

Results: As of Sep 25, 2024, 54 pts were enrolled in Part A1, 19 in Part A2, 12 in Part B and 7 in Part C. In the efficacy evaluable analysis set, ORR was 0% in Parts A1, A2 and C, and 70% (7/10; all confirmed PRs, one unconfirmed CR) in Part B. In Parts A1, A2, B and C, confirmed DCR was 49.0%, 33.3%, 100.0% and 57.1%, respectively.

TEAEs occurred in the majority of pts (**Table**). The most common treatment-related TEAEs were pyrexia (10.0% [8/80]), chills (5.0% [4/80]) and anemia (5.0% [4/80]) in the monotherapy cohorts, and anemia (75.0% [9/12]), decreased WBC (66.7% [8/12]), decreased neutrophils and decreased platelets (58.3% [7/12], each) in the combination cohort. Treatment-related serious TEAEs occurred in 2.5% (2/80; pyrexia and asthenia in a

single pt each) of pts in the monotherapy cohorts and 8.3% (1/12; febrile neutropenia) in the combination cohort. There were no BGB-A445 or tislelizumab-related TEAEs leading to treatment discontinuation or death. The most common imAE was rash (2.5% [2/80] in the monotherapy cohort; 33.3% [4/12] in the combination cohort). No Gr ≥3 imAEs or IRRs were reported.

Conclusion: BGB-A445 alone or in combination with tislelizumab and chemotherapy was generally well tolerated across all doses in pts with advanced NSCLC, HNSCC, and NPC, and showed preliminary antitumor activity.

Safety

	Part A1 NSCLC	Part A2 HNSCC	Part B NPC	Part C NSCLC and PD-L1 ≥50%
	(N=54)	(N=19)	(N=12)	(N=7)
Any treatment- emergent AE	47 (87.0)	16 (84.2)	12 (100.0)	7 (100.0)
Gr ≥3	17 (31.5)	5 (26.3)	11 (91.7)	3 (42.9)
Serious	21 (38.9)	4 (21.1)	2 (16.7)	4 (57.1)
Leading to death	4 (7.4)	2 (10.5)	0 (0)	0 (0)
Leading to treatment discontinuation	8 (14.8)	3 (15.8)	2 (16.7)	0 (0)
Any treatment-related treatment-emergent AE	28 (51.9)	7 (36.8)	12 (100.0)	3 (42.9)
Gr≥3	1 (1.9)	0 (0)	11 (91.7)	0 (0)
Any immune- mediated AE	6 (11.1)	1 (5.3)	6 (50.0)	1 (14.3)
Infusion-related reactions	6 (11.1)	3 (15.8)	3 (25.0)	1 (14.3)

Pts with multiple adverse events (AEs) are counted once. All AEs are listed as n (%).