Outcomes, Inequities, and Access to Front-Line Preferred Therapies for Chronic Lymphocytic Leukemia in the United States: A Real-World Evidence Study

Adam S. Kittai,¹ Paul J. Hampel,² Joanna M. Rhodes,³ Xiaoliang Wang,⁴ Qianhong Fu,⁴ Danni Zhao,⁵ Smriti Karwa,⁵ Taavy A. Miller,⁵* Olive Mbah,⁵ Ahmed Sawas,⁵ Benji Wagner,⁵ Rachel Myers,⁵ Derrick van Beuge,⁴ Gregory A. Maglinte,⁴ Erlene K. Seymour,⁴ Jacqueline C. Barrientos⁶

¹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹BeOne Medicines Ltd, San Carlos, CA, USA; ¹BeOne Medicines Ltd, San Carlos, CA, USA; ¹Rutgers Cancer Institute, New York, NY, USA; ¹BeOne Medicines Ltd, San Carlos, CA, USA; ¹BeO

CONCLUSIONS

- In this real-world study, receipt of front-line (1L)
 National Comprehensive Cancer Network® (NCCN)
 guideline-preferred novel therapies was associated
 with improved real-world overall survival (rwOS) and
 greater treatment durability than with ibrutinib and
 chemoimmunotherapy (CIT) in patients with chronic
 lymphocytic leukemia (CLL)
- We observed lower use of preferred novel therapies among Black and Hispanic patients, and among patients residing in neighborhoods with higher social deprivation

INTRODUCTION

- The treatment landscape for CLL has evolved over the past decade, shifting from CIT and first-generation Bruton tyrosine kinase (BTK) inhibitors (eg, ibrutinib) to novel therapies, including next-generation BTK (eg, acalabrutinib and zanubrutinib) and B-cell lymphoma 2 (BCL2) inhibitors¹⁻³
- While these novel therapies are now NCCN guideline-preferred,^{2,3} evidence supporting their real-world effectiveness and equitable use remains limited
- Prior research suggests that socioeconomic and racial/ethnic disparities may impact cancer treatment access and outcomes^{4,5}

Aim

 This study evaluated real-world clinical outcomes and inequities with 1L novel therapy utilization among patients with CLL in the US

METHODS

Data Source and Study Population

- This retrospective cohort study utilized the US-based, electronic health record-derived deidentified Flatiron Health Research Database,⁶ linked to neighborhood (US Census track or block group) data from the American Community Survey and the Agency for Healthcare Research and Quality
- Eligible patients included adults with CLL who started 1L treatment between January 1, 2019 and July 31, 2024

Study Design and Statistical Analysis

- Outcomes included rwOS and time-to-next treatment or death (rwTTNT), assessed using Kaplan-Meier (KM) estimates
- Patients were grouped by 1L therapy: CIT, ibrutinib, or NCCN guideline-preferred novel therapies (acalabrutinib, zanubrutinib, and BCL2-based regimens)^{2,3}
- Trends in treatment utilization by race/ethnicity, insurance coverage, practice type, and 19 area-level social determinants of health (SDOH) factors were assessed
- The association between race/ethnicity and 1L treatment was assessed using multinomial logistic regression, adjusting for age, sex, year of 1L initiation, immunoglobulin heavy chain variable region (IGHV) status, and 17p deletion (del17p)/TP53 status

RESULTS

Patient Characteristics

• A total of 4452 patients were included in the study (**Table 1**)

Table 1. Patient Demographic and Clinical Characteristics

	N=4452			
Age ^a , years, n (%)				
<65	1823 (40.9)			
65-74	1572 (35.3)			
≥75	1057 (23.7)			
Gender, n (%)				
Female	1731 (38.9)			
Male	2721 (61.1)			
Race and ethnicity, n (%)				
White	3717 (83.5)			
Black	371 (8.3)			
Hispanic	209 (4.7)			
Asian	39 (0.9)			
Other ^b	116 (2.6)			
ECOG PS at 1L, n (%)				
0-1	3110 (69.9)			
2-4	354 (8.0)			
Unknown	988 (22.2)			
<i>TP53</i> status, n (%)				
Not tested/Unknown or not documented	3279 (73.7)			
Tested	1173 (26.3)			
Ever <i>TP53</i> -positive ^c	167 (14.2)			
TP53-negative/Unknown or not documented ^d	1006 (85.8)			
FISH testing status, n (%)				
Not tested/Unknown or not documented	775 (17.4)			
Tested	3677 (82.6)			
Del17p-positive ^e	379 (11.2)			
Del17p-negative ^e	3008 (88.8)			
IGHV status, n (%)				
Not tested/Not documented	1916 (43.0)			
Tested	2536 (57.0)			
Mutated	977 (38.5)			
Unmutated	1328 (52.4)			
Unsuccessful/Indeterminate	231 (9.1)			
Insurance type, n (%)				
Commercial	1856 (41.7)			
Medicare	1764 (39.6)			
Medicaid	68 (1.5)			
Other	224 (5.0)			
Unknown/Not documented	540 (12.1)			
Practice type, n (%)				
Academic	942 (21.2)			
Community	3331 (74.8)			
Both	179 (4.0)			

Due to decimal rounding, percentages may not add up to 100. ^aAge categories are inclusive of the upper bound. ^bIncludes American Indian/Alaskan Native, Native Hawaiian/Other Pacific Islander, and people reporting multiple races. ^cAt 1L. ^dNegative/Unknown results for *TP53* test results are inclusive of results that are negative, equivocal, results pending, Unsuccessful/indeterminate test, or Unknown. ^ePercentages calculated among patients with FISH testing for del17p.

ECOG PS, Eastern Cooperative Oncology Group performance status; FISH, fluorescence in situ hybridization.

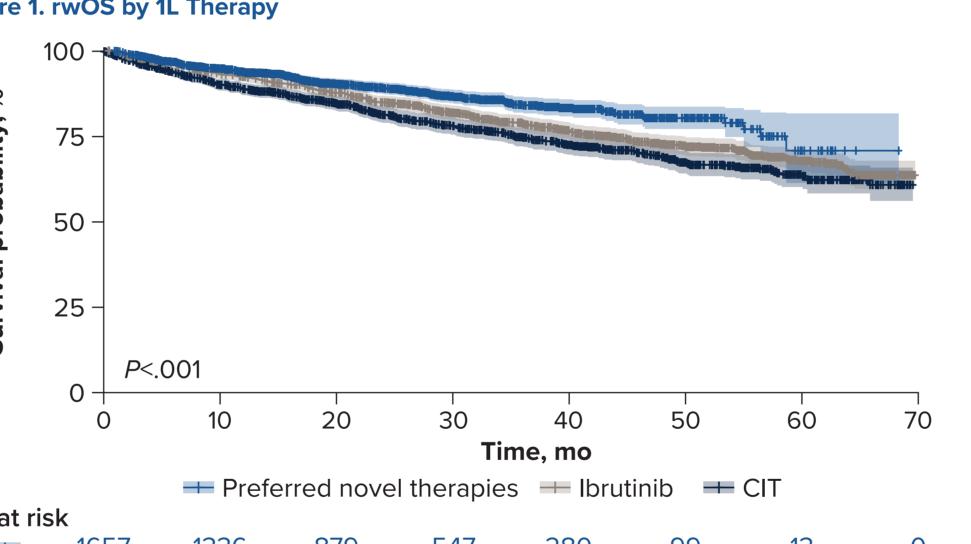
Treatment Patterns

• Overall, 37.2% of patients received an NCCN guideline-preferred novel therapy (**Table 2**). Among preferred novel therapies, BTK inhibitor monotherapy was the most common (59.9%)

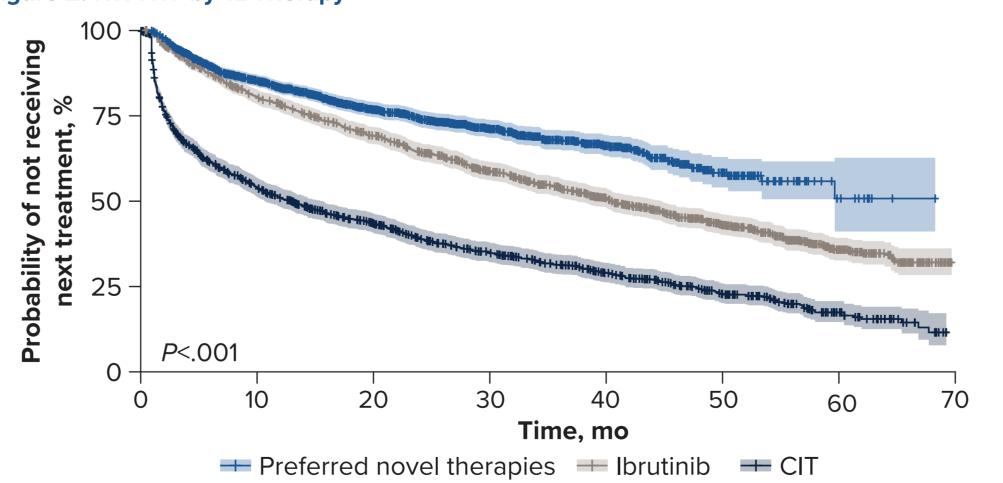
Table 2. Overall Treatment Patterns at 1L

1L Therapy, n (%)	N=4452	•
CIT ^a	1272 (28.6)	
Ibrutinib ^b	1372 (30.8)	
Preferred novel therapies	1657 (37.2)	
Other therapies ^c	151 (3.4)	

oxaliplatin, cyclophosphamide, vincristine, doxorubicin, bendamustine, gemcitabine, fludarabine, chlorambucil); chemotherapy-only regimens, and other anti-cancer therapies. blncludes ibrutinib monotherapy and ibrutinib in combination with an anti-CD20 monocle antibody (rituximab or other biosimilars). clncludes: ibrutinib + venetoclax, lenalidomide-based therapies, CAR-T, bortezomib based therapies, clinical trial drugs, stem cell transplant (autologous, allogenic).

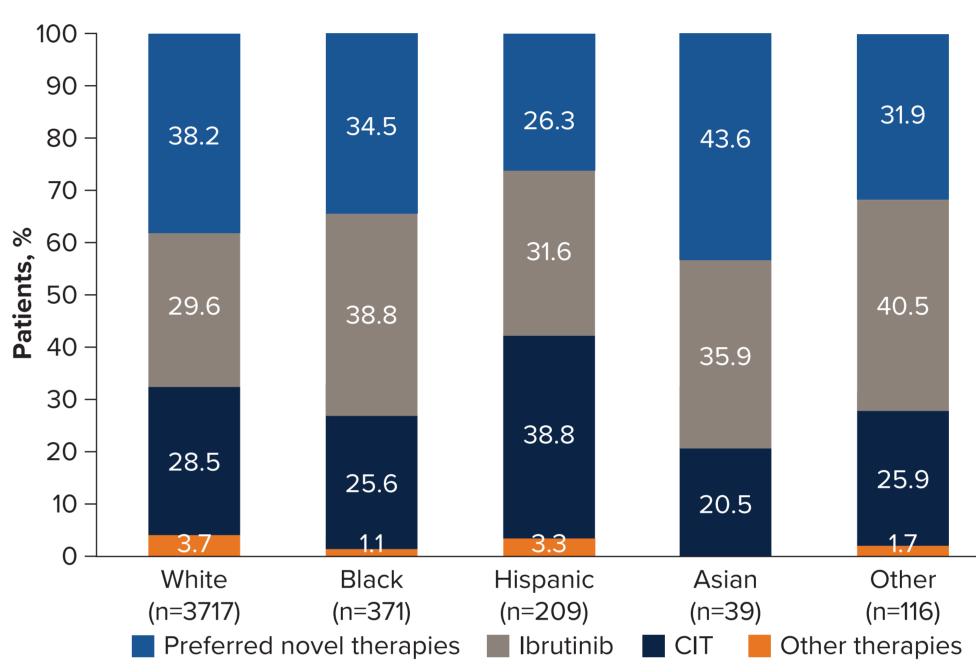

CAR-T, chimeric antigen receptor T-cell therapy.

Treatment Outcomes


N=4452

- With a median follow-up of 28.5 months, median rwOS was not reached (NR; **Figure 1**)
- Survival probabilities tended to be highest with NCCN guideline-preferred novel therapies at 6, 12, and 18 months (97%, 94%, and 91%, respectively), followed by ibrutinib (96%, 92%, and 89%) and CIT (94%, 89%, and 86%)
- Overall median (95% confidence interval [CI]) rwTTNT was 38 (36-41) months (Figure 2)
- Time to next treatment tended to be longest with NCCN guideline-preferred novel therapies at 6, 12, and 18 months (89%, 83%, and 78%, respectively), followed by ibrutinib (87%, 78%, and 71%) and CIT (61%, 51%, and 45%)

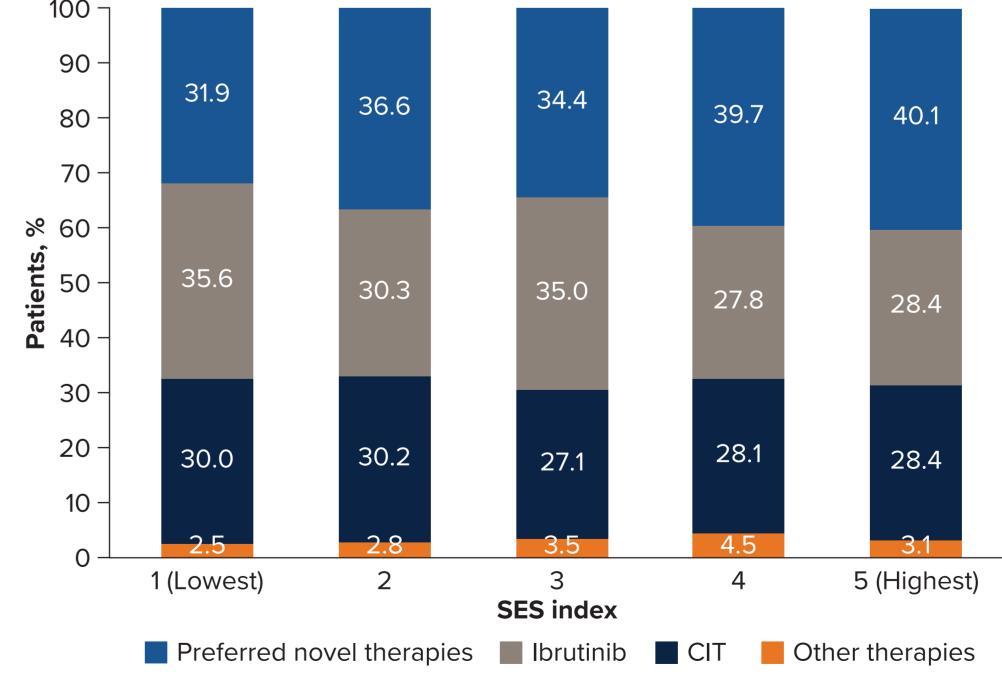
Figure 1. rwOS by 1L Therapy


Preferred novel therapies — Ibrutinib — CIT									
No. at ris	sk								
-	1657	1203	754	460	233	71	9		
-	1372	1060	870	664	471	290	115		
-	1272	629	432	292	195	113	41		

Patients with other therapies were mostly patients participating in clinical trials and are excluded from the KM curves.

Treatment Access by Race/Ethnicity

- Rates of the receipt of preferred novel therapies differed by race/ethnicity (Figure 3)
- Compared with White patients, Hispanic patients were more likely to receive CIT (adjusted odds ratio [aOR] 2.04; 95% CI: 1.98-2.09) and ibrutinib (aOR 1.69; 95% CI: 1.65-1.73) than preferred novel therapies
- Black patients were also more likely to receive ibrutinib than preferred novel therapies (aOR 1.38; 95% CI: 1.20-1.59) compared with White patients


Figure 3. Treatment Patterns by Race/Ethnicity

Treatment Access by Area-Level SDOH Factors

- More patients receiving preferred novel therapies were treated at academic centers (22.9% vs 14.9% ibrutinib), while more patients receiving ibrutinib were treated at community practices (81.4% vs 73.3% of those receiving preferred novel therapies)
- In general, compared with patients living in census tracts with the lowest social deprivation, those residing in areas with the highest social deprivation appeared less likely to receive preferred novel therapies (Figure 4)

Figure 4. Treatment Access by Socioeconomic Status (SES) Index

 In total, 25.8% and 26.7% of patients residing in predominantly Black or Hispanic neighborhoods, respectively, received a preferred novel therapy versus 38.6% of patients residing in predominantly White neighborhoods

- Higher preferred novel therapy use was associated with residence in areas with the highest levels of internet access (39.3% vs 31.9% in areas with lowest levels of internet access), vehicle ownership (39.2% vs 32.5% in areas with lowest vehicle ownership), and health insurance coverage (40.7% vs 34.1% in areas with least health insurance coverage)
- This trend was consistently observed across nearly all SDOH factors (Supplemental Table 1. Treatment access by SDOH; please scan QR code to the right to access)

DISCUSSION

- The results of this study revealed differences in clinical outcomes for patients with CLL based on race/ethnicity and SES
- These patterns highlight potential inequities in the adoption of guideline-recommended treatments, underscoring the need for research to better understand barriers leading to these inequities and tailored interventions to promote equitable treatment access

STUDY LIMITATIONS

- Generalizability of the results to patients outside of the Flatiron Health database and outside of the US may be limited
- Because the Flatiron Health database is derived from electronic health records, patient data may be incomplete or missing

REFERENCES

- 1. Molica S. *Expert Rev Hematol*. 2025;18:195-200.
- 2. Stephens DM, et al. *J Natl Compr Canc Netw.* 2023;21:563-566.
- 3. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma V.3.2025. © National Comprehensive Cancer Network, Inc. 2025. All rights reserved. Accessed July 10, 2025. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.
- 4. Kittai AS, et al. *Am J Hematol.* 2024;99:780-784.
- 5. Rhodes J, et al. HemaSphere. 2023:7(Suppl):e96103aa.
- 6. Flatiron Health. Database Characterization Guide. Flatiron.com. Published March 18, 2025. Accessed August 2025. https://flatiron.com/database-characterization.

DISCLOSURES

ASK: Research funding: AstraZeneca, BeOne Medicines Ltd; Consulting or advisory role: AbbVie, AstraZeneca, BMS, Galapagos, Kite, Eli Lilly; Honoraria: AbbVie, AstraZeneca, Eli Lilly, Janssen; Speakers' Bureau: BeOne Medicines Ltd; PJH: Research funding: AstraZeneca, BeOne Medicines Ltd; Consulting or advisory role: AbbVie; JMR: Research funding: AbbVie, Acerta, BeOne Medicines Ltd, Epizyme, Janssen, Loxo Oncology, Merck, Oncternal, Pharmacyclics, Velosbios; Consulting or advisory role: AbbVie, ADC Therapeutics, AstraZeneca, BeOne Medicines Ltd, BMS, Epizyme, Genetech, GenMab, Loxo Oncology, Janssen, Johnson & Johnson, Morphosys, Pharmacyclics, Pfizer; Honoraria: Aptitude, Curio Science, MJH Life Sciences, Ideology Health; Travel grant: Merck; XW, QF, DvB, GAM, EKS: Employment by BeOne Medicines Ltd and may hold stock or other ownership; DZ, SK, AS, BW: Employment by Flatiron Health Inc., an independent member of the Roche group; TAM, OM, RM: Employment by Flatiron Health Inc., an independent member of the Roche group, and stock ownership in Roche; JCB: Research funding: AbbVie, BeOne Medicines Ltd, Janssen; Consulting or advisory role: AstraZeneca, BeOne Medicines Ltd, Janssen.

ACKNOWLEDGMENTS

*Current affiliation: University of Cincinnati, Cincinnati, OH, USA; employee of Flatiron Health at the time of this work. The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers. This study was sponsored by BeOne Medicines Ltd. Medical writing and editorial support was provided by David M. Jensen, PhD, of AMICULUM, and supported by BeOne Medicines Ltd.