

Mediators of Racial and Ethnic Inequities in Access to Front-Line Therapies for Chronic Lymphocytic Leukemia in the United States: A Real-World Evidence Study

Joanna M. Rhodes,¹ Adam S. Kittai,² Paul J. Hampel,³ Xiaoliang Wang,⁴ Qianhong Fu,⁴ Danni Zhao,⁵ Smriti Karwa,⁵ Olive Mbah,⁵ Ahmed Sawas,⁵ Benji Wagner,⁵ Rachel Myers,⁵ Derrick van Beuge,⁴ Gregory A. Maglione,⁴ Erlene K. Seymour,⁴ Jacqueline C. Barrientos⁶

¹Rutgers Cancer Institute, New Brunswick, NJ, USA; ²Icahn School of Medicine at Mount Sinai, New York, NY, USA; ³Department of Medicine, Mayo Clinic, Rochester, MN, USA; ⁴BeOne Medicines Ltd, San Carlos, CA, USA; ⁵Flatiron Health, New York, NY, USA; ⁶Mount Sinai Comprehensive Cancer Center, Miami Beach, FL, USA

CONCLUSIONS

- In this real-world study, Black and Hispanic patients with CLL were less likely than White patients to receive 1L NCCN guideline-preferred novel therapies
- A significant proportion of these disparities was explained by area-level SDOH, particularly residential segregation
- These findings underscore the need to address structural barriers to ensure equitable access to emerging, guideline-recommended treatments

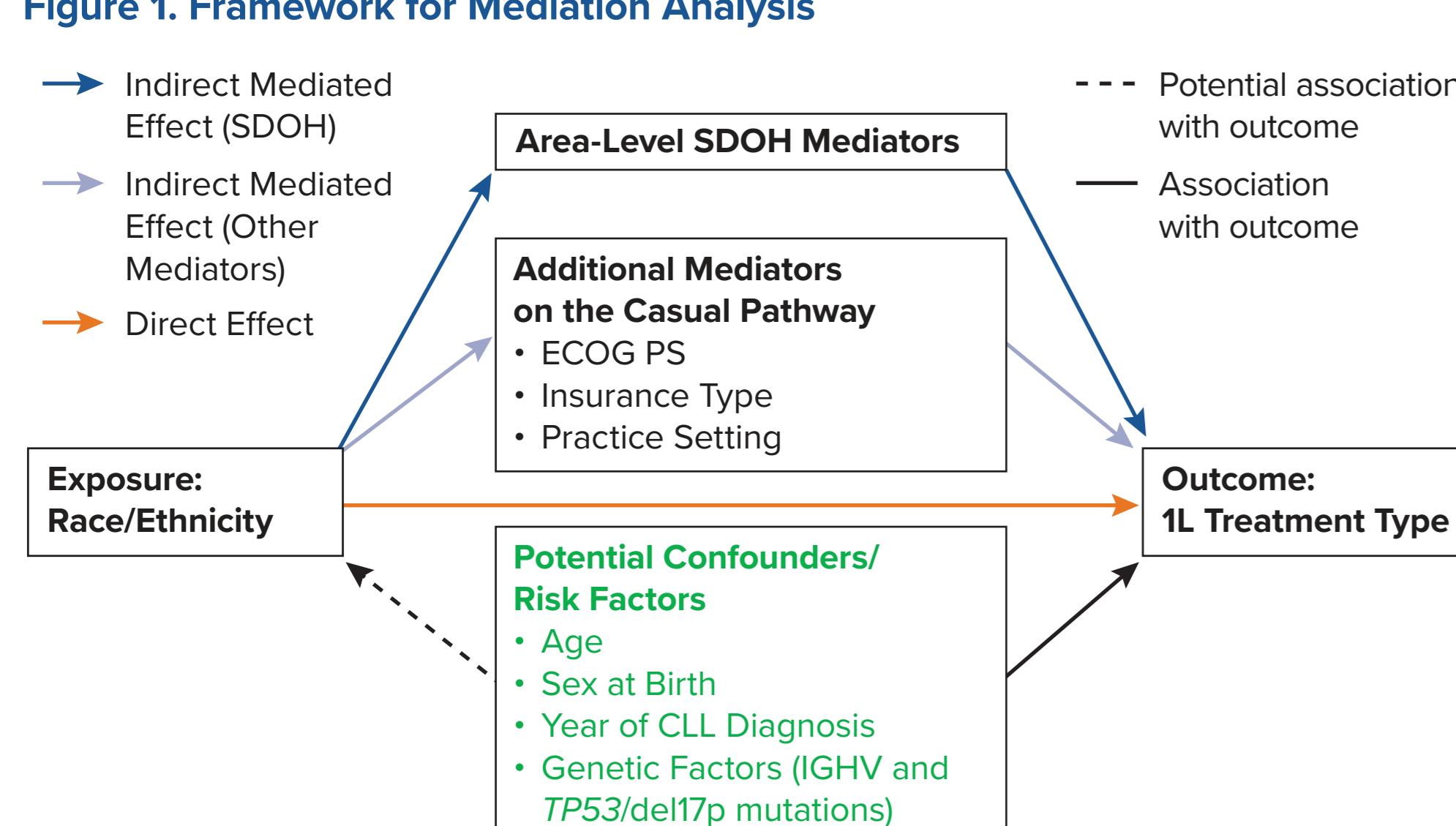
INTRODUCTION

- The treatment landscape for chronic lymphocytic leukemia (CLL) has evolved over the past decade, shifting from chemoimmunotherapy (CIT) and first-generation Bruton tyrosine kinase (BTK) inhibitors (eg, ibrutinib) to novel therapies, including next-generation BTK inhibitors (eg, acalabrutinib and zanubrutinib) and B-cell lymphoma 2 (BCL2) inhibitors^{1,2}
- While these novel therapies are now National Comprehensive Cancer Network® (NCCN) guideline-preferred,^{2,3} we previously showed that patients from different racial/ethnic groups may not have equitable access to novel therapies^{4,5}
- Social determinants of health (SDOH) factors have also been associated with differences in CLL prescribing patterns and treatment outcomes.⁶ However, few real-world studies have examined whether SDOH factors explained the association between race/ethnicity and treatment choices in CLL

Aim

- This study examined racial/ethnic inequities in front-line (1L) novel therapy utilization among US patients with CLL and potential SDOH drivers of these inequities

METHODS


Data Source and Study Population

- This retrospective cohort study utilized the US-based, electronic health record-derived deidentified Flatiron Health Research Database,⁷ linked to neighborhood (US Census tract or block group) data from the American Community Survey and the Agency for Healthcare Research and Quality
- Eligible patients included adults with CLL who started 1L treatment between January 1, 2019 and July 31, 2024

Study Design and Statistical Analysis

- Receipt of 1L therapy was the primary outcome, and included: CIT, ibrutinib, and NCCN guideline-preferred novel therapies (acalabrutinib, zanubrutinib, and BCL2-based regimens)^{2,3} with novel therapies as a reference
- Associations between race/ethnicity (White, Black, Hispanic) and 1L treatment types were assessed using logistic regressions, adjusting for age, sex, year of 1L start, immunoglobulin heavy chain variable region (IGHV) status, and del17p/TP53 status
- Mediation analysis was performed using Multiple Mediation Analysis implemented through nonlinear multiple additive regression tree models⁸
- Under the proposed conceptual framework (Figure 1), individual-level (Eastern Cooperative Oncology Group performance status (ECOG PS), practice type, insurance) and 20 area-level SDOH factors measuring social deprivation (defined as limited access to economic, social, neighborhood, physical, or healthcare resources) were assessed as potential mediators
- Only factors that met the conditions for mediators were included in the final model
- Based on the National Academy of Medicine healthcare disparities definition, most clinical factors were considered confounders a priori

Figure 1. Framework for Mediation Analysis

RESULTS

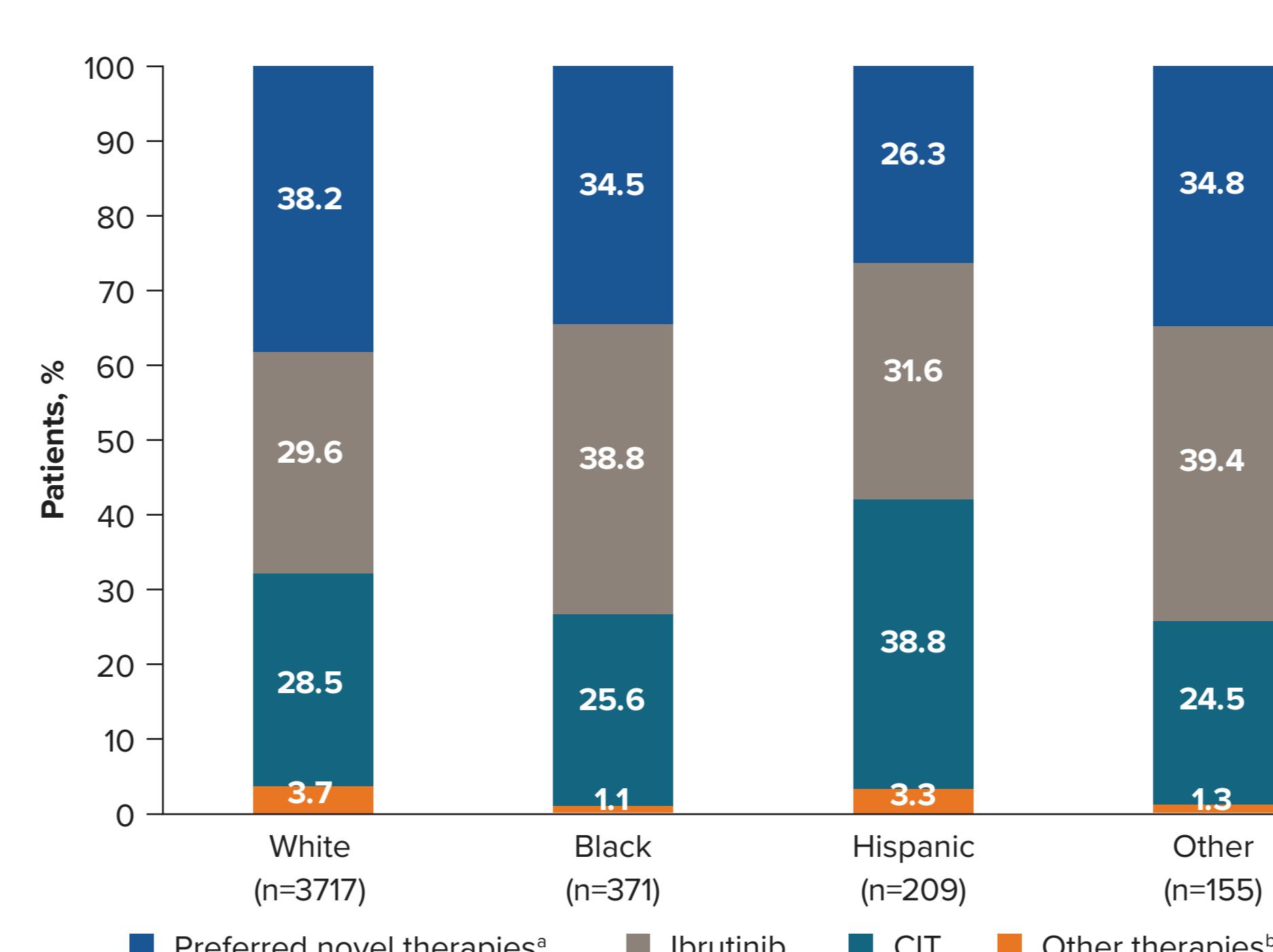
Patient Characteristics

- A total of 4452 patients were included in the study (Table 1)

Table 1. Patient Demographic and Clinical Characteristics Overall and By Race/Ethnicity

	Overall N=4452	White n=3717	Black n=371	Hispanic n=209	Other ^a n=155
Age ^b , years, n (%)					
18-49	271 (6.1)	211 (5.7)	29 (7.8)	24 (11.5)	<10
50-64	1552 (34.9)	1291 (34.7)	139 (37.5)	72 (34.4)	50 (32.3)
65-74	1572 (35.3)	1309 (35.2)	133 (35.8)	69 (33.0)	61 (39.4)
≥75	1057 (23.7)	906 (24.4)	70 (18.9)	44 (21.1)	37 (23.9)
Gender, n (%)					
Female	1731 (38.9)	1429 (38.4)	160 (43.1)	79 (37.8)	63 (40.6)
Male	2721 (61.1)	2288 (61.6)	211 (56.9)	130 (62.2)	92 (59.4)
ECOG PS at 1L, n (%)					
0-1	3110 (69.9)	2618 (70.4)	244 (65.8)	143 (68.4)	105 (67.7)
2-4	354 (8.0)	298 (8.0)	32 (8.6)	14 (6.7)	10 (6.5)
Unknown	988 (22.2)	801 (21.5)	95 (25.6)	52 (24.9)	40 (25.8)
TP53 status, n (%)					
Not tested/Unknown or not documented	3279 (73.7)	2725 (73.3)	268 (72.2)	160 (76.6)	126 (81.3)
Tested	1173 (26.3)	992 (26.7)	103 (27.8)	49 (23.4)	29 (18.7)
Ever TP53-positive at 1L	167 (14.2)	142 (14.3)	14 (13.6)	<10	<10
TP53-negative/Unknown or not documented ^c	1006 (85.8)	850 (85.7)	89 (86.4)	44 (89.8)	23 (79.3)
FISH testing status, n (%)					
Not tested/Unknown or not documented	775 (17.4)	645 (17.4)	72 (19.4)	39 (18.7)	19 (12.3)
Tested	3677 (82.6)	3072 (82.6)	299 (80.6)	170 (81.3)	136 (87.7)
Del17p-positive ^d	379 (10.3)	317 (10.3)	26 (8.7)	20 (11.8)	16 (11.8)
Del17p-negative ^d	3008 (81.8)	2505 (81.5)	259 (86.6)	137 (80.6)	107 (78.7)
IGHV status, n (%)					
Not tested/Not documented	1916 (43.0)	1587 (42.7)	160 (43.1)	97 (46.4)	72 (46.5)
Tested	2536 (57.0)	2130 (57.3)	211 (56.9)	112 (53.6)	83 (53.5)
Mutated	977 (38.5)	854 (40.1)	35 (16.6)	46 (41.1)	42 (50.6)
Unmutated	1328 (52.4)	1091 (51.2)	149 (70.6)	55 (49.1)	33 (39.8)
Unsuccessful/Indeterminate	231 (9.1)	185 (8.7)	27 (12.8)	11 (9.8)	<10
Insurance type, n (%)					
Commercial	1856 (41.7)	1575 (42.4)	150 (40.4)	64 (30.6)	67 (43.2)
Medicare	1764 (39.6)	1517 (40.8)	117 (31.5)	66 (31.6)	64 (41.3)
Medicaid	68 (1.5)	42 (1.1)	10 (2.7)	16 (7.7)	<10
Other	224 (5.0)	173 (4.7)	29 (7.8)	16 (7.7)	<10
Unknown/Not documented	540 (12.1)	410 (11.0)	65 (17.5)	47 (22.5)	18 (11.6)
Practice type, n (%)					
Academic	942 (21.2)	829 (22.3)	65 (17.5)	27 (12.9)	21 (13.5)
Community	3331 (74.8)	2738 (73.7)	293 (79.0)	178 (85.2)	122 (78.7)
Both	179 (4.0)	150 (4.0)	13 (3.5)	<10	12 (7.7)
Year of index (1L start), n (%)					
2019	895 (20.1)	736 (19.8)	83 (22.4)	39 (18.7)	37 (23.9)
2020	916 (20.6)	759 (20.4)	83 (22.4)	40 (19.1)	34 (21.9)
2021	885 (19.9)	727 (19.6)	76 (20.5)	48 (23.0)	34 (21.9)
2022	773 (17.4)	651 (17.5)	53 (14.3)	41 (19.6)	28 (18.1)
2023	690 (15.5)	605 (16.3)	44 (11.9)	26 (12.4)	15 (9.7)
2024	293 (6.6)	239 (6.4)	32 (8.6)	15 (7.2)	<10

Due to decimal rounding, percentages may not add up to 100. ^aIncludes Asian, American Indian/Alaskan Native, Native Hawaiian/Pacific Islander, and people reporting multiple races. ^bAge categories are inclusive of the upper bound. ^cNegative/Unknown. ^dPercentages calculated among patients with FISH testing for del17p. FISH, fluorescence in situ hybridization.


Black and Hispanic patients were more likely to live in neighborhoods with higher social deprivation, such as residential segregation (predominant race/ethnicity in the area: White, Black, Hispanic, Diverse), with no internet access, no vehicle ownership, and no health insurance coverage

Treatment Access by Race/Ethnicity

- Rates of the receipt of preferred novel therapies differed by race/ethnicity (Figure 2)

Overall, 37% of patients received a preferred novel therapy, which was highest among White (38.2%) patients, followed by Black (34.5%) and Hispanic (26.3%) patients

Figure 2. Treatment Patterns by Race/Ethnicity

^aPreferred novel therapies included acalabrutinib, zanubrutinib, BCL2-based regimens. ^bOther therapies included ibrutinib + venetoclax, lenalidomide-based therapies, CAR-T, bortezomib-based therapies, clinical trial drugs, stem cell transplant (autologous, allogenic), CAR-T, chimeric antigen receptor T cell.

Compared with White patients, Hispanic patients were more likely to receive CIT than preferred novel therapies (adjusted odds ratio: aOR: 2.12; 95% confidence interval [CI]: 1.46-3.09) (Table 2)

Black patients (aOR: 1.44; 95% CI: 1.05-1.97) and Hispanic patients (aOR: 1.83; 95% CI: 1.17-2.85) were more likely to receive ibrutinib than preferred novel therapies

Table 2. Unadjusted and Adjusted ORs of 1L Treatment Type by Race/Ethnicity

Race/Ethnicity	Ibrutinib versus Preferred Novel Therapies		CIT versus Preferred Novel Therapies	
	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
White (referent)	-	-	-	-
Black	1.45 (1.13-1.87)	1.44 (1.05-1.97)	1.00 (0.75-1.31)	1.00 (0.74-1.35)
Hispanic	1.55 (1.07-2.24)	1.83 (1.17-2.85)	1.98 (1.39-2.82)	2.12 (1.46-3.09)
Other	1.46 (1.00-2.12)	1.27 (0.81-2.00)	0.94 (0.62-1.44)	0.81 (0.51-1.27)

Treatment Access