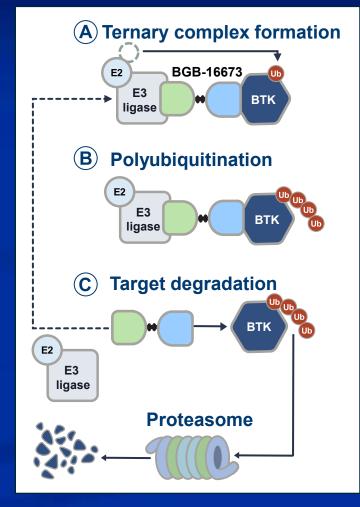


Updated Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory CLL/SLL: Results From the Ongoing Phase 1 CaDAnCe-101 Study

Lydia Scarfò,^{1,2} Ricardo D. Parrondo,³ Meghan C. Thompson,⁴ Anna Maria Frustaci,⁵ John N. Allan,⁶ Paolo Ghia,^{1,2} Irina Mocanu,⁷ Constantine S. Tam,⁸ Stephan Stilgenbauer,⁹ Damien Roos-Weil,¹⁰ Judith Trotman,¹¹ Inhye E. Ahn,¹² Nicole Lamanna,¹³ Linlin Xu,¹⁴ Kunthel By,¹⁴ Shannon Fabre,¹⁴ Daniel Persky,¹⁴ Amit Agarwal,¹⁴ John F. Seymour¹⁵

Università Vita-Salute San Raffaele, Milano, Italy;
 ²Comprehensive Cancer Center, IRCCS Ospedale San Raffaele, Milano, Italy;
 ³Mayo Clinic - Jacksonville, Jacksonville, FL, USA;
 ⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA;
 ⁵ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy;
 ⁶Weill Cornell Medicine, New York, NY, USA;
 ⁷Institute of Oncology, ARENSIA Exploratory Medicine, Düsseldorf, Germany;
 ⁸Alfred Hospital and Monash University, Melbourne, VIC, Australia;
 ⁹Ulm University, Ulm, Germany;
 ¹⁰Pitié-Salpêtrière Hospital, Paris, France;
 ¹¹Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia;
 ¹²Dana-Farber Cancer Institute, Boston, MA, USA;
 ¹³Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA;
 ¹⁴BeOne Medicines Ltd, San Carlos, CA, USA;
 ¹⁵Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia



Disclosures for Lydia Scarfò

- Consulting or advisory role: AbbVie, AstraZeneca, BeOne Medicines Ltd, Johnson & Johnson, Lilly, Merck
- Travel, accommodations, expenses: AstraZeneca, BeOne Medicines Ltd, Johnson & Johnson

BGB-16673: A Chimeric Degradation Activating Compound (CDAC)

- Many patients with CLL/SLL experience disease progression with BTK inhibitors, which can be caused by resistance mutations in BTK¹⁻³
- BGB-16673 is an orally available protein degrader that blocks BTK signaling by tagging BTK for degradation through the cell's proteasome pathway, leading to tumor regression⁴
- In preclinical models, BGB-16673 showed CNS penetration and degraded both wild-type and mutant BTK resistant to cBTK (C481S, C481F, C481Y, L528W, T474I) and ncBTK inhibitors (V416L, M437R, T474I, L528W)^{4,5}
- BGB-16673 led to substantial reductions in BTK protein levels in peripheral blood and tumor tissue⁶
- Here, updated safety and efficacy results in patients with R/R CLL/SLL in phase 1 of CaDAnCe-101 are presented

^{1.} Moreno C. *Hematol Am Soc Hematol Educ Program*. 2020;2020:33-40; 2. Woyach JA, et al. *N Engl J Med*. 2014;370:2286-2294; 3. Wang E, et al. *N Engl J Med*. 2022;386:735-743; 4. Feng X, et al. EHA 2023. Abstract P1239; 5. Wang H, et al. EHA 2023. Abstract P1219; 6. Seymour JF, et al. ASH 2023; Abstract 4401.

CaDAnCe-101: A Phase 1/2, Open-Label, Dose-Escalation/ **Expansion Study in R/R B-Cell Malignancies**

CaDAnCe-101 (BGB-16673-101, NCT05006716)

Key eligibility criteria for CLL/SLL

- Meets iwCLL 2018 criteria for treatment
- ≥2 prior therapies, including cBTKi if approved for disease
- ECOG PS 0-2 & adequate end-organ function

Key study objectives for part 1

- **Primary:** safety^c & tolerability, MTD. & RDFE
- activityd

Selected R/R B-cell malignancies (MZL, FL, MCL, CLL/SLL, WM, DLBCL, RT)

Part 1a: Dose escalation

n≤72 Oral, QD, 28-day cycle^b Doses: 50 mg, 100 mg, 200 mg, 350 mg, 500 mg, 600 mg

R/R CLL/SLL n≤30

Cohort 1:

Post BTK inhibitor

Part 1: Monotherapy dose finding^a

Part 1b: Safety expansion

Selected R/R B-cell malignancies (MZL, MCL, CLL/SLL, WM) n≤120

Selected R/R B-cell malignancies (MZL, WM, RT, DLBCL, FL) n≤100

Selected R/R B-cell malignancies (Japan only) (MZL, FL, MCL, CLL/SLL, WM) n=6-9

Selected BTK inhibitor-naïve **B-cell malignancies** (MZL. MCL. CLL/SLL. WM. RT) n≤40

• Secondary: PK, PD, & preliminary antitumor

BGB-16673 RDFE

Phase 2

Cohort 2: Post BTK inhibitor R/R MCL

Cohort 3: Post BTK inhibitor. R/R WM

Cohort 4: Post BTK inhibitor. R/R MZL

Cohort 5: R/R FL

Cohort 6: R/R non-GCB

Cohort 7: Post BTK inhibitor. R/R RT

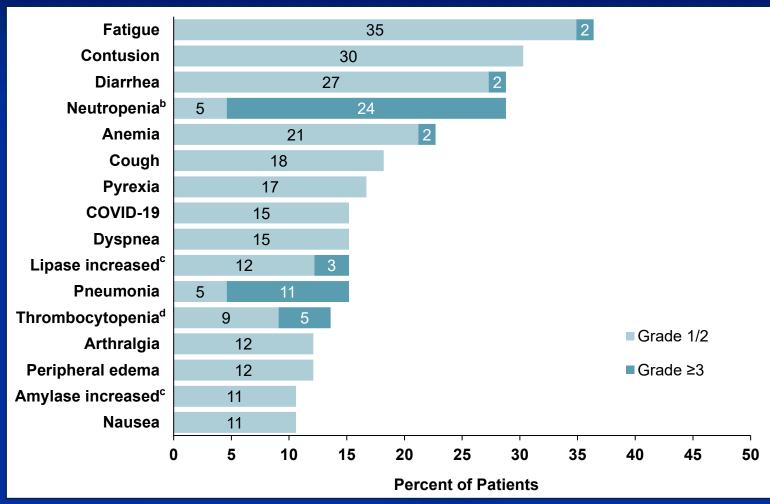
^aData from gray portions of the figure are not included in this presentation. ^bTreatment was administered until progression, intolerance, or other criteria were met for treatment discontinuation. ^cSafety was assessed according to Common Terminology Criteria for Adverse Events v5.0 in all patients and iwCLL hematologic toxicity criteria in patients with CLL. dResponse was assessed per iwCLL 2018 criteria after 12 weeks in patients with CLL. cBTKi, covalent Bruton tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; FL, follicular lymphoma; GCB, germinal center B cell; iwCLL, International Workshop on Chronic Lymphocytic Leukemia; MCL, mantle cell lymphoma; MTD, maximum tolerated dose; MZL, marginal zone lymphoma; PD, pharmacodynamics; PK, pharmacokinetics; R/R, relapsed/refractory; RDFE, recommended dose for expansion; RT, Richter transformation; SLL, small lymphocytic lymphoma; WM, Waldenström macroglobulinemia.

Baseline Patient Characteristics

Heavily pretreated, with high-risk CLL features

	Total (N=66)				
Age, median (range), years	70 (47-91)				
Male, n (%)	45 (68.2)				
ECOG PS, n (%)					
0	38 (57.6)				
1	27 (40.9)				
2	1 (1.5)				
CLL/SLL risk characteristics at study entry,					
n/N with known status (%)					
Binet stage C	29/62 (46.8)				
Unmutated IGHV	38/49 (77.6)				
del(17p) and/or <i>TP5</i> 3 mutation	43/66 (65.2)				
Complex karyotype (≥3 abnormalities)	22/44 (50.0)				

	Total (N=66)
Mutation status, n/N (%)	
BTK mutation present	24/63 (38.1)
PLCG2 mutation present	10/63 (15.9)
BTK and PLCG2 mutation present	5/63 (7.9)
No. of prior lines of therapy, median (range)	4 (2-10)
Prior therapy, n (%)	
Chemotherapy	47 (71.2)
cBTK inhibitor	62 (93.9)
ncBTK inhibitor	14 (21.2)
BCL2 inhibitor	54 (81.8)
cBTK + BCL2 inhibitors	42 (63.6)
cBTK + ncBTK + BCL2 inhibitors	12 (18.2)
Discontinued prior BTK inhibitor due to PD, n/N (%) ^a	55/62 (88.7)


Overall Safety Summary

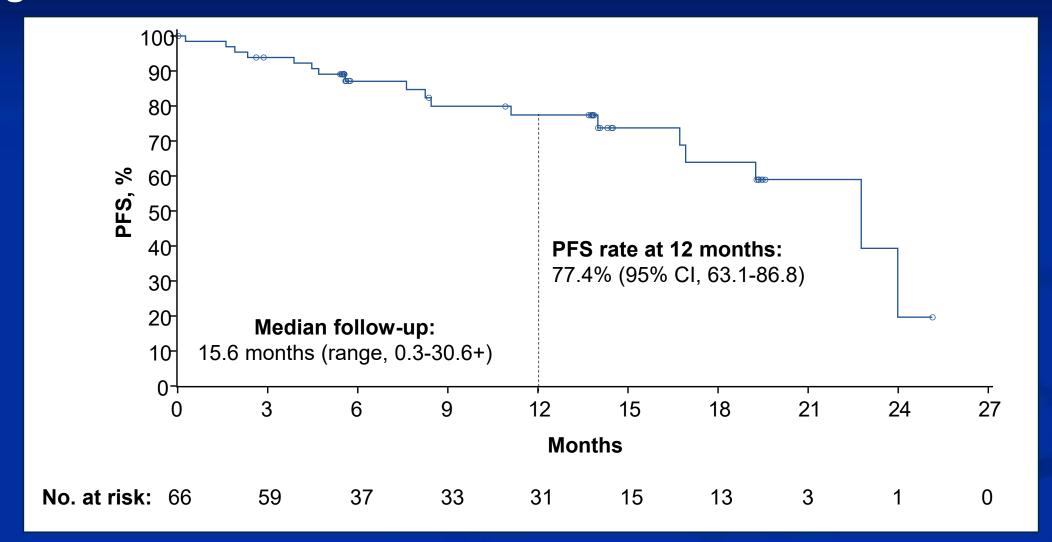
Tolerable safety profile, with no treatment-related TEAEs leading to death

Detients is (0/)	Total
Patients, n (%)	(N=66)
Any TEAE	63 (95.5)
Any treatment-related	49 (74.2)
Grade ≥3	40 (60.6)
Treatment-related grade ≥3	20 (30.3)
Serious	30 (45.5)
Treatment-related serious	8 (12.1)
Leading to death	4 (6.1)
Treatment-related leading to death	0
Leading to treatment discontinuation	9 (13.6)
Treatment-related leading to treatment discontinuation	2 (3.0)

Summary of All-Grade TEAEs in ≥10% of All Patients

- Most common TEAEs were fatigue in 37% and contusion (bruising) in 30% of patients
- Atrial fibrillation: n=2 (one grade 1 and one grade 2 in the context of infection and PD, respectively)
- Major hemorrhage^a: n=2 (one grade 1 subarachnoid hemorrhage and one grade 3 subdural hemorrhage)
 - No new events occurred since the last update
- No pancreatitis

Overall Response Rate


Significant responses, particularly at 200-mg dose level

	50 mg (n=1)	100 mg (n=22)	200 mg (n=16)	350 mg (n=15)	500 mg (n=12)	Total (N=66)
Best overall response, n (%)						
CR/CRi	0	1 (4.5)	1 (6.3)	0	1 (8.3)	3 (4.5)
PR ^a	1 (100)	11 (50.0)	12 (75.0)	11 (73.3)	9 (75.0)	44 (66.7)
PR-L	0	6 (27.3)	2 (12.5)	0	1 (8.3)	9 (13.6)
SD	0	4 (18.2)	0	0	1 (8.3)	5 (7.6)
PD	0	0	1 (6.3)	1 (6.7)	0	2 (3.0)
Discontinued prior to first assessment	0	0	0	3 (20.0)	0	3 (4.5)
Overall response rate, n (%) ^b	1 (100)	18 (81.8)	15 (93.8)	11 (73.3)	11 (91.7)	56 (84.8)
Time to first response, median (range), months ^c	2.9 (2.9-2.9)	2.8 (2.0-6.2)	2.9 (2.6-8.3)	2.8 (2.6-19.4)	2.8 (2.6-13.8)	2.8 (2.0-19.4)
Time to best response, median (range), months	2.9 (2.9-2.9)	2.8 (2.0-11.1)	3.4 (2.6-13.8)	5.6 (2.6-19.4)	8.3 (2.7-13.8)	3.4 (2.0-19.4)
Duration of exposure, median (range), months	29.6 (29.6-9.6)	7.1 (3.7-23.7)	16.2 (2.9-24.6)	15.6 (0.2-22.8)	15.3 (6.8-21.4)	12.9 (0.2-29.6)

High Overall Response Rates in High-Risk Subgroups

	ORR, n/N with
Subgroup	known status (%)
Double exposure (previously received cBTKi + BCL2i)	38/42 (90.5)
Triple exposure (previously received cBTKi + ncBTKi + BCL2i)	9/12 (75.0)
del(17p) and/or <i>TP5</i> 3 mutation	35/43 (81.4)
Complex karyotype (≥3 abnormalities)	16/22 (72.7)
BTK mutations	18/24 (75.0)
PLCG2 mutations	9/10 (90.0)

Progression-Free Survival

PFS, progression-free survival.

Conclusions

- In phase 1 of CaDAnCe-101, the novel BTK degrader BGB-16673 was safe and well tolerated in this
 heavily pretreated population of patients with R/R CLL/SLL
 - Only 2 patients discontinued treatment due to a treatment-related TEAE
 - No treatment-related deaths occurred
 - The 200-mg dose was selected as the RDFE for phase 2
- Significant antitumor activity was observed, including in patients with BTK mutations and those
 previously exposed to cBTK, ncBTK, and BCL2 inhibitors
 - ORR was 84.8%, and CR/CRi rate was 4.5%; in the 200-mg dose group, ORR was 93.8%
 - ORR in triple-exposed patients: 75.0%
 - Median time to first response: 2.8 months
 - PFS rate at 12 months: 77.4%
 - 65.2% of patients still on treatment with a median follow-up of 15.6 months
- BGB-16673 is being evaluated in ongoing phase 2 and phase 3 studies in R/R CLL

CaDAnCe-101 Study Sites (Recruiting)

• Enrollment for CaDAnCe-101 phase 1 and phase 2 is ongoing at >100 study sites across the US, Canada, the UK, France, Georgia, Germany, Italy, Moldova, Spain, Sweden, Turkey, Australia, South Korea, Brazil,

and Japan

Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers
- This study was sponsored by BeOne Medicines Ltd
- Medical writing support was provided by Shanen Perumal, PhD, of Nucleus Global, an Inizio company, and supported by BeOne Medicines

Corresponding Author: Lydia Scarfò, scarfo.lydia@hsr.it