

SEPTEMBER 6-9, 2025 | BARCELONA, SPAIN

wclc.iaslc.org () & @ O O in #WCLC25

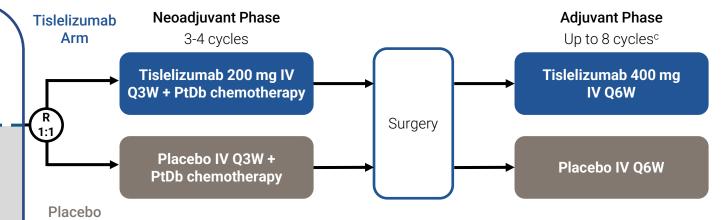
PERIOPERATIVE TISLELIZUMAB FOR RESECTABLE NON-SMALL CELL LUNG CANCER: FINAL ANALYSIS OF RATIONALE-315

Dongsheng Yue,¹ Wenxiang Wang,² Hongxu Liu,³ Qixun Chen,⁴ Chun Chen,⁵ Lunxu Liu,⁶ Guofang Zhao,⁷ Peng Zhang,⁸ Fan Yang,⁹ Guang Han,¹⁰ Bentong Yu,¹¹ Yue Yang,¹² Haiquan Chen,¹³ Jie Jiang,¹⁴ Bin Yao,¹⁵ Shengfei Wang,¹⁶ Shiangjiin Leaw,¹⁶ Kirsha Naicker,¹⁷ Wenjuan Zheng,¹⁵ Cuniing Yu. 15 Changli Wang¹

¹Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; ²The Second Department of Thoracic Surgery, Hunan Cancer Hospital, Hunan, China; ³Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, China; ⁴Department of Thoracic Oncological Surgery, Zhejiang Cancer Hospital, Hangzhou, China; ⁵Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; ⁶Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China; ⁷Department of Thoracic Surgery, Ningbo Second Hospital, Ningbo, China; ⁸Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China; Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China; ¹²The Second Department of Thoracic Surgery, Beijing Cancer Hospital, Beijing, China; ¹³Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; ¹⁴Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China; ¹⁵BeOne Medicines, Ltd., Beijing, China; ¹⁶BeOne Medicines, Ltd., Shanghai, China; ¹⁷BeOne Medicines, Ltd., London, UK

MA04.08

Introduction and Methods


Previously, RATIONALE-315 (NCT04379635) met its dual primary and key secondary endpoints, demonstrating significant improvements in EFS, MPR rate, and pCR rate with a tolerable safety profile for perioperative tislelizumab plus neoadjuvant platinum-based doublet (PtDb) chemotherapy vs placebo plus neoadjuvant PtDb chemotherapy¹

Key Eligibility Criteria

- Resectable stage II-IIIA NSCLCa (eligible for R0 resection)
- FCOG PS 0 or 1
- EGFR/ALK WTb

Stratification Factors

- Histology (squamous vs non-squamous)
- Disease stage (II vs IIIA)
- PD-L1 TC expression (≥1% vs <1%/ not evaluable/indeterminate)

PtDb Chemotherapy

Arm

- Squamous: cisplatin/carboplatin + paclitaxel
- Non-squamous: cisplatin/carboplatin + pemetrexed

Completed Adjuvant Treatment^d

- Tislelizumab arm: 115/226 (50.9%) patients
- Placebo arm: 109/227 (48.0%) patients

Primary Endpoints

- BIPR-assessed MPR rate
- BICR-assessed EFS

Key Secondary Endpoint

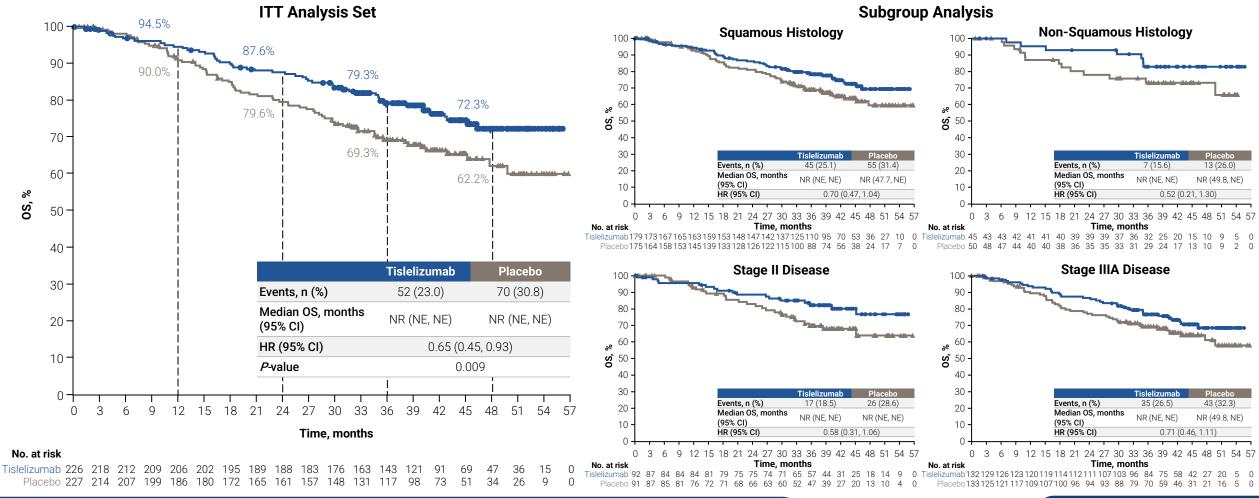
BIPR-assessed pCR rate

Other Secondary Endpoints

- BICR-assessed DFS
- Investigator-assessed EFS

Data cutoff: March 7, 2025 (median study follow-up: 38.5 months [range: 0.1-57.0]).

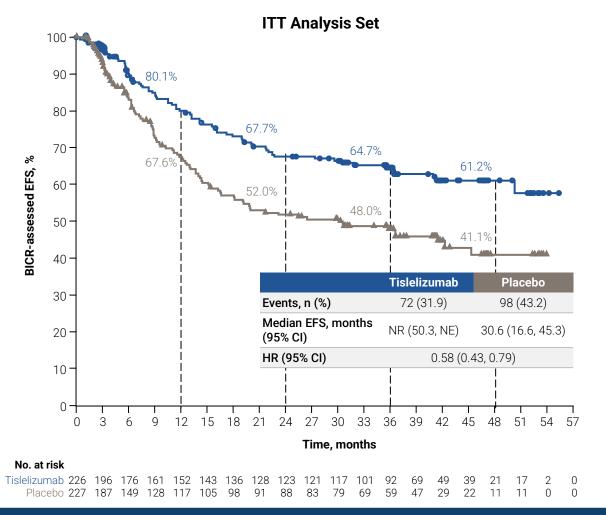
The RATIONALE-315 interim analysis publication¹ can be accessed via this OR code.


Statistical Considerations

- Overall type I error was strongly controlled at a one-sided α of 0.025
- EFS/OS final analysis was prespecified to occur after approximately 184 EFS events
- The Haybittle-Peto *P*-value boundary for the final OS testing was updated based on the actual number of OS events

wclc.iaslc.org

• Patients in the tislelizumab arm experienced a statistically significant and clinically meaningful improvement in OS vs those in the placebo arm, which was consistent across prespecified and post-hoc subgroups



Results: Event-Free Survival

Subgroup Analysis

	Tislelizumab, n/N	Placebo, n/N	Tislelizumab, median (95% CI)	Placebo, median (95% CI)	Hazard ratio (9	5% CI)
Overall	72/226	98/227	NR (50.3, NE)	30.6 (16.6, 45.3)	0.9	58 (0.43, 0.79)
Age group						
<65 years	48/143	52/129	NR (41.4, NE)	42.3 (19.2, NE)	0.7	70 (0.47, 1.03)
≥65 years	24/83	46/98	NR (NE, NE)	18.1 (14.4, 36.5)	0.4	45 (0.27, 0.74)
Sex						
Male	66/205	93/205	NR (50.3, NE)	25.5 (15.5, 45.3)	0.8	57 (0.41, 0.78)
Female	6/21	5/22	NR (16.1, NE)	NR (11.2, NE)	0.9	93 (0.28, 3.08)
ECOG performance status						
0	44/142	61/154	NR (50.3, NE)	41.5 (18.1, NE)	0.6	52 (0.42, 0.91)
1	28/83	37/73	NR (31.8, NE)	19.2 (12.6, 30.6)	0.8	52 (0.32, 0.85)
Disease stage at baseline						
II	22/92	33/91	NR (50.3, NE)	NR (18.1, NE)	0.8	55 (0.32, 0.94)
IIIA	50/132	65/133	NR (36.4, NE)	19.9 (13.1, 41.5)	0.6	50 (0.41, 0.87)
Histologic subtype						
Squamous	53/179	73/175	NR (50.3, NE)	30.6 (16.6, NE)	0.8	58 (0.41, 0.82)
Non-squamous	19/45	24/50	NR (19.1, NE)	30.2 (11.1, NE)	0.6	66 (0.36, 1.21)
PD-L1 TC expression						
<1% (excluding NE/indeterminate)	30/89	35/84	NR (27.4, NE)	30.6 (15.2, NE)	0.7	70 (0.43, 1.14)
≥1%	39/130	58/132	NR (50.3, NE)	30.6 (15.3, NE)	0.9	53 (0.35, 0.79)
1%-49%	17/59	35/70	NR (40.9, NE)	18.1 (12.3, NE)	0.4	41 (0.23, 0.73)
≥50%	22/71	23/62	NR (41.4, NE)	45.3 (18.1, NE)	0.7	71 (0.40, 1.28)
Smoking status						
Current	14/45	21/52	NR (36.5, NE)	41.5 (15.3, NE)	0.5	59 (0.30, 1.17)
Former	48/148	63/138	NR (41.4, NE)	19.8 (13.8, NE)	0.8	57 (0.39, 0.83)
Never	10/33	14/37	NR (16.2, NE)	42.3 (11.2, NE)	0.5	59 (0.26, 1.33)
Neoadjuvant platinum chemotherapy						
Cisplatin	36/120	56/124	NR (50.3, NE)	35.7 (12.7, NE)	0.8	53 (0.35, 0.81)
Carboplatin	27/80	33/76	NR (22.7, NE)	23.2 (15.2, NE)	0.6	62 (0.37, 1.04)
Switched from cisplatin to carboplatin	9/25	9/25	NR (16.2, NE)	NR (8.8, NE)	0.	73 (0.29, 1.84)
				0.0 0.5 1.0 1.5 2.0		
				Favours tisleliz	umab Favours pla	acebo

Results: Safety Summary

- Perioperative tislelizumab plus neoadjuvant chemotherapy was well tolerated; the safety profile was consistent with the known risks of the individual therapies and interim analyses with no new safety signals identified
- The most frequently reported TRAEs in both the tislelizumab and placebo arms were neutrophil count decreased (any grade, 78.8% vs 78.3%; grade ≥3, 61.5% vs 59.3%) and WBC count decreased (any grade, 63.3% vs 67.3%; grade ≥3, 16.8% vs 14.2%)

Safety Analysis Set

n (%)	Tislelizumab Arm (n=226)	Placebo Arm (n=226)	
Patients with ≥1 TRAEs	224 (99.1)	225 (99.6)	
Grade ≥3	165 (73.0)	152 (67.3)	
Serious	35 (15.5)	20 (8.8)	
Leading to death ^a	4 (1.8)	2 (0.9)	
Leading to discontinuation of any study treatment	29 (12.8)	21 (9.3)	
Leading to dose modification of any study treatment	89 (39.4)	73 (32.3)	
Leading to surgery delay ^b	12 (5.3)	4 (1.8)	
Leading to surgery cancellation	1 (0.4)	1 (0.4)	
Patients with any imAEs	91 (40.3)	41 (18.1)	
Grade ≥3	21 (9.3)	7 (3.1)	
Serious	24 (10.6)	5 (2.2)	
Leading to deatha	2 (0.9)	0 (0.0)	
Leading to tislelizumab/placebo discontinuation	13 (5.8)	0 (0.0)	
Leading to tislelizumab/placebo dose modification ^c	29 (12.8)	6 (2.7)	
Treated with systemic corticosteroids for imAEs	33 (14.6)	7 (3.1)	

Conclusions

- A statistically significant and clinically meaningful benefit in OS was observed with perioperative tislelizumab plus PtDb chemotherapy vs placebo plus PtDb chemotherapy (HR=0.65 [95% CI: 0.45, 0.93]; one-sided P-value=0.009)
 - This benefit was consistent across prespecified and post-hoc subgroups
- There were clinically meaningful improvements in EFS, consistent with results from the prespecified and post-hoc subgroups in this analysis and the primary EFS analysis
- Perioperative tislelizumab plus PtDb chemotherapy was well tolerated, and the safety profile was consistent with the known risks of the individual therapies and the profile reported previously
- These final results of RATIONALE-315 further support perioperative tislelizumab plus neoadjuvant PtDb chemotherapy as an efficacious and well-tolerated treatment in patients with resectable NSCLC

Acknowledgments

- The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centres
- We would like to acknowledge all of the investigators who have contributed to the RATIONALE-315 study: Lejie Cao, Chun Chen, Fang Chen, Haiquan Chen, Jun Chen, Qixun Chen, Yuping Chen, Ying Cheng, Jiuwei Cui, Junke Fu, Guang Han, Jian Hu, Mu Hu, Yunchao Huang, Jie Jiang, Jun Li, Lin Li, Qiang Li, Shanqing Li, Yongde Liao, Changhong Liu, Hongxu Liu, Lunxu Liu, Naiquan Mao, Tiejun Ren, Yuping Sun, Lijie Tan, Min Tao, Changli Wang, Wenxiang Wang, Yongsheng Wang, Jun Wu, Ming Wu, Jianping Xiong, Shidong Xu, Fan Yang, Kunpeng Yang, Yue Yang, Min Ye, Bentong Yu, Lanjun Zhang, Lumin Zhang, Peng Zhang, Qiudi Zhang, Yi Zhang, Guofang Zhao, Jian Zhao, Hua Zhong, Kunshou Zhu, and Xibin Zhuang
- This study was sponsored by BeOne Medicines, Ltd.
- Medical writing support was provided by Nivedita Saxena, PhD, of Parexel, and supported by BeOne Medicines

