

第28屆中国临床肿瘤学会

(CSCO)学术年会

2025年9月10日-14日 中国·济南

21840

Efficacy of Continuous Zanubrutinib vs Fixed-Duration Venetoclax in Combination With Obinutuzumab in Treatment-Naive Chronic Lymphocytic Leukemia: A Matching-Adjusted Indirect Comparison

Keshu Zhou,¹ Talha Munir,² Keri Yang,³ Leyla Mohseninejad,⁴ Sheng Xu,⁵ Pal Rakonczai,⁶ Balazs Dobi,⁶ Rhys Williams,³ Nicolas Martinez-Calleˀ

¹Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; ²Leeds Teaching Hospitals NHS Trust, Leeds, UK; ³BeOne Medicines Ltd, San Carlos, CA, USA; ⁴BeOne Medicines Ltd, Schiphol, the Netherlands; ⁵BeOne Medicines Ltd, Shanghai, China; ⁶Evidera, London, UK; ⁷Nottingham University Hospitals NHS Trust, Nottingham, UK

CONCLUSIONS

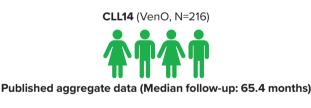
- This unanchored MAIC investigated the relative efficacy of zanubrutinib vs venetoclax + obinutuzumab and demonstrated zanubrutinib had longer progression-free survival and a trend for extended overall survival
- Results should be interpreted with considerations of MAIC model assumptions and limitations
- Further studies are needed to confirm these findings

INTRODUCTION

- * The efficacy of continuous zanubrutinib has been evaluated in the SEQUOIA study (NCT03336333)1 in treatment-naive chronic lymphocytic leukemia/ small lymphocytic lymphoma (CLL/SLL), while the combination of fixed-duration venetoclax + obinutuzumab (VenO) has been evaluated in CLL14
- 'In the absence of head-to-head clinical trials comparing zanubrutinib and VenO, an unanchored matching-adjusted indirect comparison (MAIC) was conducted between zanubrutinib (SEQUOIA) and VenO (CLL14)

METHODS

- * The unanchored MAIC was conducted using study data with similar median follow-up periods (SEQUOIA, 62.7 months; CLL14, 65.4 months)
- * An unanchored MAIC was applied given the lack of common comparator arms between the SEQUOIA and CLL14 trials Individual patient data (IPD) of zanubrutinib patients in SEQUOIA were reweighted to match the key population characteristics of VenO patients in CLL14
- Matching adjustments for age, sex, ECOG performance status, CLL/SLL patient proportion, disease stage, IGHV mutation status, beta-2 microglobulin, creatinine clearance, B symptoms, and time from diagnosis were considered based on data availability and magnitude of imbalance between populations
- To mitigate potential bias from the COVID-19 pandemic that overlapped in timing with SEQUOIA and not CLL14, additional analysis was conducted censoring for COVID-19 related deaths
- Subgroup analysis was also conducted for IGHV mutation status
- * Pseudo-IPD for VenO were reconstructed from digitized Kaplan-Meier curves of progression-free survival per investigator (PFS-INV) and overall survival (OS)
- Sensitivity analyses were conducted in model scenarios of different matching variables


Table 1. Variables Matched in the Base Case and Sensitivity Analyses

	Main analysis			Sensitivity analyses			
Variables	Unadjusted ITT population	Base case-adjusted population	S1	S2	S3	S4	
Demographics							
Age ≥75 %		✓	✓	✓	✓		
Age, median		✓	✓	✓	✓		
Male sex		✓	✓	✓	✓		
Genetics							
Normal		✓	✓		✓		
del(17p)		✓	✓	✓	✓		
del(11q)		✓	✓	✓	✓		
t12q		✓	✓		✓		
TP53 mutation		✓	✓	✓	✓		
IGHV mutated		✓	✓	✓	✓		
Complex karyotype ≥3 abnormalities					✓	✓	
Clinical characteristics							
ECOG PS		✓	✓	✓	✓		
Binet stage		✓	✓	✓	✓		
B symptoms ^a		✓	✓		✓		
Time from initial diagnosis, median		✓	✓		✓		
Laboratory parameters							
Beta2-microglobulin >3.5 mg/L		✓	✓	✓	✓		
Beta2-macroglobulin, median		✓	✓		✓		
Creatinine clearance <70 mL vs >70/min		✓	✓		✓		
Creatinine clearance, median		✓	✓		✓		
CLL IPI Stage			✓				

Abbreviations: CLL-IPI, International Prognostic Index for Chronic Lymphocytic Leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; ESS, effective sample size; IGHV, immunoglobulin heavy chain

Figure 1. Overall Methodology Details

ables identified as potential treatment effect modifiers or prognostic factors for matching Age, sex, ECOG PS, Binet stage, B symptoms^a, time from diagnosis, del(17p), del(11q), t12q, TP53 and IGHV mutation status, complex karyotype, CLL IPI stage, beta-2-microglobulin,

atching, reweighting, and adjusting variables			
Zanubrutinib (SEQUOIA), N=352 After population adjustments, ESS=163 for SEQUOIA	SEQUOIA CLL14		
	Balance		

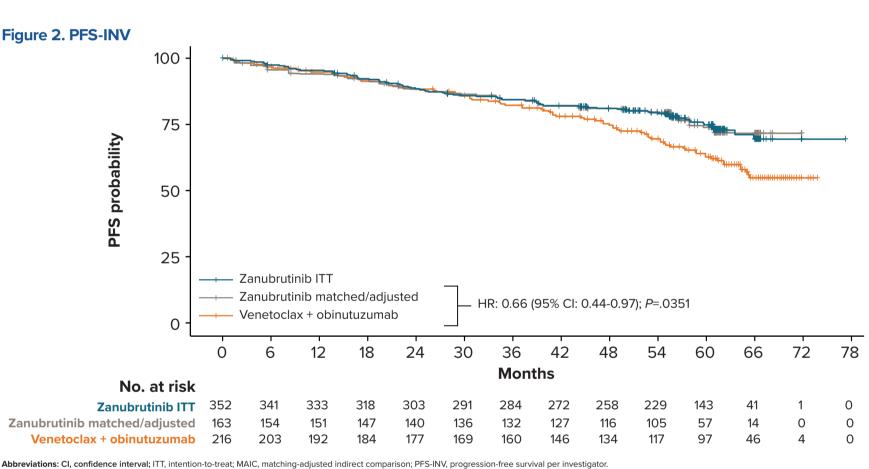
Hazard Ratios (HR) for PFS-INV, OS: PFS-INV, OS Weighted Cox proportional hazard regression ^aB symptoms, constitutional symptoms associated with CLL including fever, night sweats, and weight loss. Abbreviations: CLL-IPI, International Prognostic Index for Chronic Lymphocytic Leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; ESS, effective sample size; IGHV, immunoqlobulin heavy chain variable region; ITT, intention-to-treat; MAIC, matched-adjusted indirect comparison; OS, overall survival; PFS-INV, progression-free survival per investigator; VenO, venetoclax + obinutuzumal

RESULTS

After applying the matching adjustment to align with the population characteristics of the VenO patients in CLL14 (N=216), the effective sample size (ESS) for zanubrutinib in SEQUOIA was 163 (Table 2)

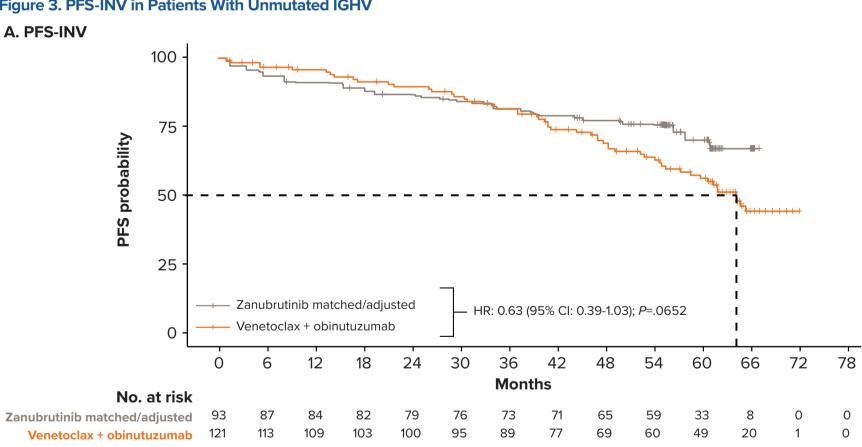
Table 2. Baseline Characteristics of Zanubrutinib Arm in SEQUOIA ITT and Post-Matching and VenO Arm in CLL14

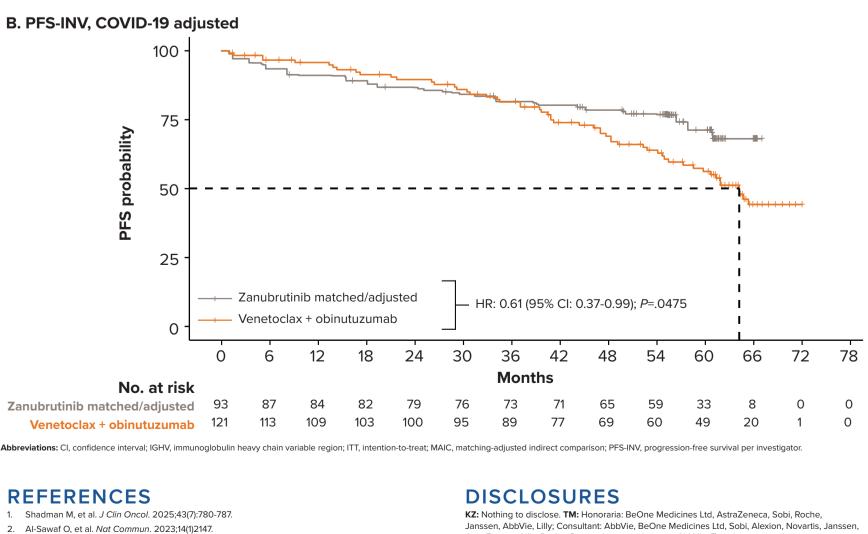
	SE	CLL14		
Characteristic	Zanubrutinib unadjusted ITT N=352	Zanubrutinib matched/adjusted ESS=163	Venetoclax + obinutuzumat N=216	
Demographics				
Age ≥75 years, %	26.7	33.3	33.3	
Age, median, years	70.0	72.0	72.0	
Male sex, %	66.2	67.6	67.6	
Genetics, %				
Normal	15.9	23.8	23.8	
del(17p)	31.8	8.1	8.1	
del(11q)	11.6	17.1	17.1	
t12q	12.5	17.1	17.1	
TP53 mutation	18.2	12.0	12.0	
IGHV mutated	43.0	38.6	38.6	
Clinical characteristics				
ECOG PS=1 vs 0, %	48.0	45.8	45.8	
ECOG PS=2+ vs 0, %	8.2	13.0	13.0	
Binet stage B vs A, %	54.5	35.2	35.2	
Binet stage C vs A, %	31.0	43.5	43.5	
B symptoms, ^a %	57.1	48.0	48.0	
Time from initial diagnosis, median, months	29.0	31.0	31.0	
Laboratory parameters				
Beta2-microglobulin >3.5 mg/L, %	62.7	59.4	59.4	
Beta2-microglobulin, median, mg/L	4.0	3.9	3.9	
Creatinine clearance <70 mL/min vs >70 mL/min, %	48.3	59.5	59.5	
Creatinine clearance, median, mL/min	70.0	65.6	65.2	


^aR symptoms, constitutional symptoms associated with CLL including fever, night sweats, and weight loss. Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; ESS, effective sample size; IGHV, immunoglobulin heavy chain variable region; ITT, intention-to-treat; VenO, venetoclax + obinutuzumab

Efficacy Outcomes

- ^{*} Zanubrutinib had longer PFS (HR_{pes,inv}= 0.66 [95% Cl: 0.44-0.97]; *P*=.0351) and a trend for extended OS (HR_{os}=0.89 [95% Cl: 0.55-1.46]; *P*=.6468)
- Results were consistent after adjustment for COVID-19, HR_{PES,INV}=0.58 (95% CI: 0.38-0.88; *P*=.0095) and HR_{OS}=0.74 (95% CI: 0.43-1.25; *P*=.2587), suggesting potential treatment benefit favoring zanubrutinib in terms of PFS-INV and OS, respectively (Table 3)
- Sensitivity analyses exploring the impact of using different sets of matching factors showed consistent results (Table 3)


Table 3. Relative Treatment Effects for Base Case and Sensitivity Analyses


	Main analysis		Sensitivity analyses			
	Unadjusted ITT population	Base case-adjusted population	S1	S2	\$3	S 4
Sample size for	N		Effectiv	e Sample Size (ESS))	
SEQUOIA zanubrutinib	352	163	154	56	116	108
PFS-INV: zanubrutinib vs	venetoclax + obinutuzuma	b				
Hazard ratio 95% CI, <i>P</i> value	0.66 0.48-0.89, <i>P</i> =.0077	0.66 0.44-0.97, <i>P</i> =.0351	0.67 0.45-1.01, <i>P</i> =.0529	0.73 0.41-1.33, <i>P</i> =.3076	0.62 0.40-0.96, <i>P</i> =.0336	0.75 0.49-1.15, <i>P</i> =.1884
OS: zanubrutinib vs venet	toclax + obinutuzumab					
Hazard ratio 95% CI, <i>P</i> value	0.78 0.52-1.18, <i>P</i> =.2423	0.89 0.55-1.4, <i>P</i> =.6468	0.87 0.52-1.46, <i>P</i> =.5947	0.95 0.47-1.91, <i>P</i> =.8759	0.85 0.49-1.48, <i>P</i> =.5579	1.03 0.60-1.75, <i>P</i> =.9230
COVID-19 adjusted						
PFS-INV: zanubrutinib vs	venetoclax + obinutuzuma	b				
Hazard ratio 95% CI, <i>P</i> value	0.59 0.43-0.81, <i>P</i> =.0011	0.58 0.38-0.88, <i>P</i> =.0095	0.59 0.39-0.91, <i>P</i> =.0176	0.61 0.32-1.19, <i>P</i> =.1467	0.52 0.33-0.84, <i>P</i> =.0075	0.63 0.39-0.99, <i>P</i> =.0456
OS: zanubrutinib vs venet	toclax + obinutuzumab					
Hazard ratio 95% CI, <i>P</i> value	0.63 0.41-0.98, <i>P</i> =.0394	0.74 0.43-1.25, <i>P</i> =.2587	0.72 0.41-1.26, <i>P</i> =.2481	0.71 0.31-1.64, <i>P</i> =.4232	0.66 0.35-1.23, <i>P</i> =.1924	0.78 0.43-1.41, <i>P</i> =.4116

* The efficacy of zanubrutinib vs VenO was also compared in the IGHV unmutated subgroup; after matching (SEQUOIA, ESS n=93; CLL14, n=121), HR., was 0.63 (95% CI: 0.39-1.03; P=.0652) and 0.61 (95% CI: 0.37-0.99; P=.0475) for the base and COVID-19 adjusted scenarios, respectively (Figure 3A and 3B)

Figure 3. PFS-INV in Patients With Unmutated IGHV

ACKNOWLEDGMENTS This study was sponsored by BeOne Medicines Ltd. Medical writing was provided by Adam Ruth, PhD,

of Nucleus Global, an Inizio company, and supported by BeOne Medicines.

Janssen, AbbVie, Lilly: Consultant: AbbVie, BeOne Medicines Ltd. Sobi, Alexion, Novartis, Janssen AstraZeneca, Lilly, Roche; Research grants: Janssen, AbbVie; Travel, accommodations, or expenses: Alexion, BeOne Medicines Ltd, AbbVie, Janssen, AstraZeneca; Advisory board: AbbVie, BeOne Medicines Ltd, AstraZeneca, Janssen. KY: Employment; may own stock; research funding; travel, accommodations, or expenses; leadership role; BeOne Medicines Ltd. LM. SX, RW; Employment, may own stock: BeOne Medicines Ltd. PR, BD: Research funding: BeOne Medicines Ltd. NM-C: Advisory board: AbbVie, AstraZeneca, BeOne Medicines Ltd, Takeda, CLS Behring; Speaker, honoraria: AbbVie, AstraZeneca, Janssen, BeOne Medicines Ltd.